TITLE	The 1989 Educational Software Preview Gut
INSTITUTION	Educational Software Evaluation Consortıum, Menlo Park, CA.
SPONS AGENCY	Calıfornia State Dept. of Educatıon, Sacramento.
REPORT NO	ISBN-9-924667-41-9
PUB DATE	88
NO're	109p.; This 1988-89 guide was developed at the
	California Software Evaluatıon Forum (Menlo Park, CA,
	May 9-12, 1988). For the 1987 Preview Gusde, see ED
	289 482. Titles on inside and outside cover page
	differ slıghtly.
AVAILABLE FROM	International Council for Computers in Education,
	University of Oregon, 1787 Agate Street, Eugene, OR
	97403 (\$8.00, prepaid).
PUB TYPE	Guides - Non-Classroom Use (055) -- Book/Product
	Reviews (072)
EDRS PRICE	MFO1 Plus Postage. PC Not Available from EDRS.
DESCRIPTORS	Authorıng Aids (Programing); Computer Graphıcs;
	Computer Software Reviews; *Courseware; Elementary
	Secondary Education; *Evaluation Criterıa;
	*Instructional Material Evaluation; Material
	Development; Mathematics Instruction;
	*Mıcrocomputers; Problem Solving; Science
	Instruction; Second Language Instruction; Soclal
	Sciences
IDENTIFIERS	Software Evaluation

ABSTRACT
Developed to help educators locate microcomputer software programs they may want to preview for students in grades K-l2, this guide lists commercially available instructional software programs that have been favorably reviewed by members of the Educational Software Evaluation Consortium. Programs are arranged alphabetıcally by title within curriculum areas: art; business education (accounting/bookkeeping, economics, and typing); computers; electronic periodicals; health, instructional tools (authoring system, classroom management, database, graphics generator, instructional materials generator, spelling checker, spreadsheet, student study aid, telecommunications, and word processor); keyboarding; language arts; library media skills; mathematics (advanced mathematics, algebra, geometry/measurement, number, problem solving and statistics); music; preschool/early ch: irt od; problem solving/logic; science (astronomy, biology, chemistry. jarth science, environmental education/ecology, general science, physics, and scientific method/lab equipment); social science (economıcs, geography, government/political scıence, history, and sociology;; tests and testing; vocational education/industrial arts; world languages (French, German, Spanish, and language tool). Information provided fcr each program includes the title, publishers, computer and instructional mode specifications, grade level(s), price, and a very brıef annotation. A list of revıew participants, abbreviation kē̈亍, än alphabetıcal list of titles, publishers' addresses, ll articles and a policy statement on software use, review, and evaluation, eight of which are reprints from Computers in Composition Instruction or The Computing Teacher are also included. (EW)

The 1988-89 Educational Software Preview Guide
developed by the
Educational Software Evaluation Consortium at the Califormia Software Evaluation Forum
May 9-12, 1988

The book prices given below are for prepaid orders. On other orders a $\$ 2.50$ invoicing fee will be added. Please add shipping charges of $\$ 2.50$ for orders up to $\$ 20 ; \$ 3.50$ for orders between $\$ 21$ and $\$ 50$; $\$ 4.50$ for orders between $\$ 51$ ard $\$ 90$; and 5% for orders above $\$ 90$.

QUANTITY
1-4 copies
5-9 copies
10-99 copies
$100+$ copies
PRICE (U.S.)
$\$ 8.00$
$\$ 7.20$
$\$ 6.40$
$\$ 5.60$

Please place your orders with:

INTERNATIONAL COUNCIL FOR COMPUTERS IN EDUCATION
University of Oregon
1787 Agate Street
Eugene, Oregon 97403
(503)686-4414, 686-4429

The 1988-89 Educational Software Preview Guide was developed by the Educational Software Evaluation Consortium. The Guide is designed to assist educators in locating software for preview; it is not intended to endorse these products for purchase without examination. ©1988 Califomia State Department of Education. ICCE is acting only as distributor of this publication and is not responsible for the contents.

TABLE OF CONTENTS

!retace 2
1988-89 Participants 4
Key to Abbreviations 5
Publisher Abbreviations 7
Preview Guide by Curriculum Area 10
Alphabetical List of Titles 56
Publishers' Addresses. 71
Courseware Selection 77
Ann Lathrop
Identifying Equitable Software 79
Raymond Rose
Preview Center Criteria: A Survey Summary 80
Ann Lathrop and Vicki Smith
The Curriculum, The Computer and The Magic Spark 83
Joanne Troutner
Software Tools-A One-Semester Secondary School Computer Course. 86
John Bromley and John Lakatos
Tools for Thought 89
Janet Parker
Software in the Classroom-A Form for Teacher Use. 92
Cynthia Burt
Creating a Software Review Collection 94
Glenn Fisher
Software Organization. 95
Leon Roland
Software Copyright Interpretation 97
LeRoy Finkel
Policy Statement on Software Copyright-An ICCE Policy Statement 98
ICCE Software Copyright Committee
The Most Important Criteria Used by the Educational Software Evaluation Consortium 100
Gary G. Bitter and David Wighton

PREFACE

The 1988-89 Educational Software Preview Guide includes a list of favorably reviewed microcomputer software for instructional use in preschool through grade twelve. It is NOT a buying guide. It has been developed solely as an aid to educators in locating programs they may want to preview. The Consortium's participants recommend that all software be previewed by educators to determine its suitability for their instructional programs and students.

The 1988-89 Educational Software Preview Guide has been developed by th: Educativini Software Evaluation Consortium, which represents 29 organizations involved in computer education throughout North America. The programs listed in this guide have been favorably reviewed at participating sites. Placement of a title on a list and into specific subjects, grade levels, and instructional modes reflects the best judgment of the Consortium's participants.

This guide is not all-inclusive. It includes only commerciaỉy available instructional software. Titles not included in the guide fall into the following categories: not yet widely reviewed, not readily available to review, unfavorably reviewed, or outside specified categories (e.g., multimedia materials). Each edition of the guide is an independent publication and includes titles from carlier editions only if they meet the criteria established for the current year.

Development of The 1988-89 Educationa! Software Preview Guide was the major purpose of the California Software Evaluation Forum, held at Valiombrosa Center in Menlo Park, California, May 9-12, 1988. The Forum was sponsored by the California Software Clearinghouse in the San Mateo County Office of Education. The California State Department of Education funded this project as one activity of the Office of Educational Technology. Additional financial support for the Educational Software Evaluation Consortiurn was provided by Phi Delta Kappa and the participating organizations. Technical consultant for the project was Lary Smith, Wayne County ISD, Michigan.

The 1988-89 Educational Software Preview Guide is copyrighted by the California State Department of Education. Quoting, excerpting
from, or reprinting any portion of it for commercial purposes is strictly prohibied. Producers of products listed in The 1988-89 Educational Software Preview Guide are hereby granted permission to reprint the itaiement below in its entirety in catalogs, advertising, brochures, or new products announcements.
"
(product title(s))
is/are
inc'uded in The 1988-89 Educational Software Preview Guide, a list of favorably reviewed products compiled by the 29 -member Educational Software Evaluation Consortium."

Permission for reprinting and distributing The 1988-89 Educational Software Preview Guide, including electronic distribution, is granted to:

1. All sites and agencies participating in the Educational Software Evaluation Consortium
2. Public governmental agencies, with written consent of the California State Department of Education

Except as stated in (1) and (2) above, The 1988-89 Educational Software Preview Guide may not be reprinted in any publication other than the official publication of a participating site or organization. All reproductions of The 1988-89 Educational Software Preview Guide must include this preface and musi be printed either in whole or by complete subject-area sections. No titles may be added or deleted from any section. For more information on this guide, contact:

Ann Lathrop, Editor
California Software Clearinghouse
Instructional Technology Center
San Mateo County Office of Education
333 Main Street
Redwood City, CA 94063

How to Use the Preview Guide

The Preview Guide is useful for locating software for a particular curriculum area, grade level and machine. You can check under "Preview Guide by Curriculum Area" to locate any appropriate software. If you are interested in
a program, the "Addresses of Publishers" section has the necessary information to order a catalog or the software for preview if possible. (Many publishers now have preview policies.)

If you are already interested in a piece of software, check for it under "Preview GuideTitles and Prices" as another possible source of information of the software. Keep in mind that the absence of a title from this list is not to be interpreted as a negative judgment. Many excellent packages may not have been widely reviewed by the time of this forum, and the rate at
which excellent packages are appearing seems to be increasing.

Use of the Preview Guide by Software Developers
 The Preview Guide is also useful for

 developers of educational software. They can use the Guide to identify curriculum areas, grade levels within curriculum areas, or machines where there is little favorably reviewed software and then direct their efforts toward these areas or machines.
1988-89 PARTICIPANTS EDUCATIONAL SOFTWARE EVALUATION CONSORTIUM

ALBERTA EDUCATION
Mary Knox
ARIZONA STATE UNIVERSITY
MICROCOMPUTER-BASED RESEARCH AND
LEARNING
Gary Bitter
BRITISH COLUMBIA MINISTRY OF
EDUCATION
Wayne Groutage
CALIFORNLA EDUCATIONAL COMPUTING CONSORTIUM
Ted Perry
CALIFORNIA SOFTWARE CLEARINGHOUSE LeRoy Finkel, Bobby Goodson, Ann Lathrop, Jim Shaver

CHIME, OKLAHOMA STATE UNIVERISTY Patty Reeves

COLORADO DEPARTMENT OF EDUCATION Bernajean Porter

CUE-COMPUTER-USING EDUCATORS
John Vaille
EPIE INSTITUTE
Mark Sherry
FLORIDA CENTER FOR INSTRUCTIONAL COMPUTING
Stephanie Van Deventer
FLORIDA DEPARTMENT OF EDUCATION Shirley McCandless

INDIANA CLEARINGHOUSE FOR EDUCATIONAL TECHNOLOGY Michael Olds

INTERNATIONAL COUNCIL FOR COMPUTERS IN EDUCATION
Anita Best, Judi Johnson
LANCASTER-LEBANON PUBLIC SCHOOLS, PENNSYLVANIA Jeffrey Kent

THE LEARNING EXCHANGE, KANSAS CITY, MISSOURI
Linda Kostner
LOS ANGELES UNIFIED SCHOOL DISTRICT, CALIFORNIA
Sandra Weiss
MICRO-IDEAS, ILLINOIS
Rick Nelson
MICROSIFT
Jim Pollard
MINNESOTA DEPARTMENT OF EDUCATION
Harold MacDermot
MONTGOMERY COUNTY PUBLIC SCHOOLS, MARYLAND
Carol Muscara
NEVADA DEPARTMENT OF EDUCATION Christine Huss

NEW YORK CITY BOARD OF EDUCATION Jean Ruchala

NEW YORK STATE EDUCATION DEPARTMENT Barbara Trombley

NORTH CAROLINA STATE DEPARTMENT OF PUBLIC INSTRUCTION John Brim

OAKLAND SCHOOLS, MICHIGAN Mike Souden

PUTNAM/WESTCHESTER BOCES, NEW YORK
Chris Morton
WAYNE COUNTY ISD, MICHIGAN
Lary Smith, Keith Zook
WYOMING DEPARTMENT OF EDUCATION Steve King

YORK UNIVERSITY FACULTY OF EDUCATION, ONTARIO
Curt Dudley-Marling

KEY TO ABBREVIATIONS

SUBJECT ABBREVIATIONS

AT	Art
BE - AC	Business Education -
BE - EN	Accounting/Bookkeeping
Business Education - Economics	
BE - TY	Business Education - Typing
CS	Computers
EP	Electronic Periodicals
HL	Health
IT - AU	Instructional Tools - Authoring
	System
IT - CM	Instructional Tools - Classroom
	Management
IT - DB	Instructional Tools - Data Base
IT - GG	Instructional Tools - Graphics
IT - IM	Generator
	Instructional Tools - Instructional
Materials Generator	
IT - SK	Instructional Tools - Spelling
	Checker
IT - SD	Instructional Tools - Spreadsheet
IT - SA	Instructional Tools - Student
	Study Aid
IT - TC	Instructional Tools -
IT - WP	Telecommunications
	Instructional Tools - Word
Processor	
KB	Keyboarding
LA	Language Ars
LM	Library Media Skills
MA - AD	Mathematics - Advanced
MA - AL	Mathematics
Mathematics - Algebra	
MA -GM	Mathematics -
	Geometry/Measurement
MA - NU	Mathematics - Number
MA -ST	Mathematics - Statistics
MU	Music
PR	Preschonl/Early Childhood
PS	Problem Solving/Logic
SC -AY	Science - Astronomy
SC - BL	Science - Biology
SC - CH	Science - Chemistry
SC -ES	Science - Earth Science
SC -EE	Science - Environmental
	Education/Ecology
SC - GS	Science - General Science
SC - PH	Science - Physics

SC-SM Science-Scientific Method/Lab Equipment
SS - EC Social Science - Economics
SS - GE Social Science - Geography
SS - GO Social Science -
Government/Political Science
SS - HI Social Science - History
SS - SO Social Science - Sociology
TE Tests and Testing
VE Vocational Education/Industrial Ars
WL - FR World Languages - French
WL-GR World Languages - German
WL - SP World Languages - Spanish
WL - LT World Languages - Language Ton

INSTRUCTIONAL MODE ABBREVIATIONS
AU Authoring System
CA Creative Activity
CP Computer Programming
DB Data Base
DE Demonstration
DP Drill and Practice
EG Educational Game
GG Graphics Generator
IF Interface
IM Instructional Materials Generator
PS Problem Solving/Logic
SD Spreadsheet
SH Shell/Mini-authoring System
SI Simulation
SK Spelling Checker
TC Tclecommunications
TE Test
TU Tutorial
WP Word Processor
GRADE LEVEL ABBREVIATIONS
P Primary (K-3)
E Elementary (4-6)
M Middle (7-9)
S Secondary (9-12)
T Teacher

COMPUTER ABBREVIATIONS
AC Acorn
AM Amiga
AP Apple
AT Atari
CO Commodore 64
IB IBMPC
JR IBM PCjr
MC Macintosh
PE Commodore PET
PS IBMPS/2
TA Tandy 1000
TC TRS-80 Color
TR TRS-80 Model III/4
VC Commodore VIC

TIC RESOURCE GUIDE ABBREVIATIONS
F Foreign Language
H History-Social Science
L Language Ars
M Mathematics
S Science
V Visual and Performing Arts
E Exemplary
D Desirable
PRICE NOTATION

* in PRICE column indicates a series for which programs are also sold separately.

PUBLISHER ABBREVIATIONS

Abbreviation

A.L.P.S.

ACTIVE LEARN
ADD WES
ADOBE
ADV ID
AGS
ALDUS
ALFRED MUSIC
ALLEN BONADI
APPLE
ASHTON TATE
ATARI
BAUDVILLE
BEAGLE BRO
BEDFORD SOFT
BLUELION
BORLAND
BRITANNICA
BRODERBUND
C \& C SOFT
CACTUSPLOT
CHALLENGER
CHANCERY SOF
CLARIS
COMMODORE
COMPRESS
COMPU-TEACH
CONDUIT
CREATIVE PUB
CREATIVE TEC
CRICKET SW
DAVIDSON
DC HEATH
DECISION
DESIGN SCI
DIDATECH
DLM
EARTHWARE
ED TECH
ED'L ACTV
EDUSOFT
EDUTECH
ELECTR ART
EPYX

Publisher
Automated Language Processing Systems
Active Learning Systems
Addison-Wesley Publishing Co.
Adobe Systems
Advanced Ideas, I ic.
American Guidance Service, Inc. Aldus
Alfred Publishing Co., Inc.
allen bonadio associates
Apple Computer, Inc.
Ashton-Tate
Atari Corp.
Baudville
Beagle Brothers
Bedford Software, Ltd.
Blue Lion Software
Borland International
Britannica Software
Broderbund Software
C \& C Software
Cactusplot Company
Challenger Software Corp.
Chancery Software, Ltd.
Claris Corp.
Commodore Computer is stems Div.
COMPress
Compu-Teach
CONDUIT-University of Iowa
Creative Publications
Creative Technology, Inc.
Cricket Software
Davidson \& Associates, Inc.
D.C. Heath \& Co.

Decision Development Corp.
Design Science
Didatech Software
DLM
Earthware Computer Services
Educational Technology
Educational Activities, Inc.
EduSoft
EduTech
Electronic Arts
Epyx, Inc.

Abbreviation	Publisher
ETC	Educational Technology
	Center/Harvard Graduate Schooi of Education
EXSYM	Exsym
FOCUS	Focus Media
FREESOFT	Freesoft Co.
GAMCO	Garnco Industries
GESSLER	Gessler Educational Software
GREAT WAVE	Great Wave Software
GROLIER	Grolier Electronic Publishing, Inc.
HARTLEY	Hartley Courseware
HAYES	Hayes Microcomputer Products, Inc.
HBJ	Harcourt Brace Jovanovich
HIGH TECH	High Technology Software Products
HOLT R\&W	Holt, Rinehart and Winston
HOUGHTON	Houghton Mifflin Co.
HRM SOFTWR	HRM Software/ A Division of Queue Inc.
HUMANITIES	Humanities Software
IBM	IBM Educational Systems
INNOVISION	Innovision
ISL SOFTWR	Island Software
KRELL	Krell Software Corp.
LCSI	Logo Computer Systems, Inc.
LEGO	Lego Systems, Inc.
LETRASET USA	Letraset USA
LIV TEXT	SYMANTEC/Living Videotext
LOTUS	Division Lous Development Corp
LRNG TECH	Lous Development Corp.
MARK DAVIDS	Mark Davids
MARSHWARE	Marshwar
MCGRAW HILL	McGraw-Hill Book Cc./School Division
MECC	MECC
MEDIAGENIC	Mediagenic
MEITNER	Meizner Bussin Machines, Inc.
MENTOR LRN	Mentor Learning Systems, Inc.
MICRO P\&L	Micro Power $\hat{\&}$ Light Co.
MICROSOFT	Microsoft Corp.
IvIDWESTPC	Midwest Publications, Inc.
MILLIKEN	Milliken Publishing Co.
MINDPPLAY	Mindplay, Inc.
MINDSCAPE	Mindscape, Inc.
NASHOBA	Nashoba Systems, Inc.
NATIONAL, GEO	National Geographic Society
NEWSWEEK	Newsweek, Inc.
OPTIMUM RES	Optimum Resource, Inc.
PAPERBACK	Paperback Software
PASSPORT	Passport Designs, Inc.
PRENTICE	Prentice-Hall Allyn and Bacon
PTI-KOALA	PTI-Koala

Abbreviat:ūn
RAND MCNLY
RANDOM SAVTEK CORP
SCHOLASTIC
SCOTT FORS
SENSIBLE
SHENANDOAH
SILICON BEAC
SILVER
SIMON \& SCHU
SOFTSWAP
SPINNAKER
SPRINGBOARD
STYLEWARE
SU.JBURST
SVE
SW PUB
TECHED
TEMPORAL
TERRAPIN
TIME
TLC
TOM SNYDER
TRUE BASIC
TYC
VERNIER
WILEY
WORD PERFECT

Publisher

Rand McNally \& Co.
Random House School Division
Savtek Corp.
Scholastic, Inc.
Scott, Foresman and Co.
Sensible Software
Shenandoah Softwa :
Silicon Beach Software, Inc.
Silver Burdett \& Ginn
Simon \& Schuster Software
Softswap
Spinnaker Software, Inc.
Springboard Software
Styleware, Inc.
Sunburst Communications
Society for Visual Education
South-Western Publishing Co.
Technical Educational Consultants
Temporal Acuity Products, Inc.
Terrapin, Inc.
Time Education Center
Learning Cornpany, The
Tom Snyder Productions
True BASIC, Inc.
Teach Yourself by Computer
Software, Inc.
Vernier Software
John Wiley \& Sons, Inc.
Word Perfect Corporation

Preview Guide by Curriculum Area

$$
* \mathbf{A R}
$$

Title
Publisher
Computers
Modes
PEMST Price
see also INSTRUCTIONAL TOOLS - GRAPHICS GENERATOR section

Title	Publisher	Computers	Modes	P EMST	Price
GRAPHICWORKS Desktop publishing package	MINDSCAPE	MC	$G G$	- S T	149.95
KOALAPAINTER Graphics used with nursery rhymes; req	PTI-KOALA quires Koalapad	AP,AT,CO,JR	CA,GG	P EM - T	29.95
MAC 3D High resolution graphics program featu	CHALIENGER tres three-dimens	gres AP,MC	CA,GG	- - S T	195.00
MACDRAW Graphics development tool for creating	CLARIS structured graphi	$\begin{aligned} & \text { diawings } \end{aligned}$	CA,GG	P EMST	195.00
MACPAINT General-purpose graphics development	tool CLARIS	MC	CA,GG	- E M S T	125.00
MACVISION Capture video images on the computer	PII-KOALA screen via a video	MC a; can print ima	CA,GG	- E M S T	349.95
MR. PIXEL'S CARTOON KIT Create animated cartoon graphics	MINDSCAPE	AP,CO,IB	CA,GG	P EM -	39.95
MR. PIXEL'S PROGRAMMING PA.NT' SET	MINDSCAPE	AP,CO,IB	CA,GG	P E M	39.95
Create, design, and credit pictures on computer screen; can print pictures					
NEWSROOM Desktop publishing program for flyers	SCHOLASTIC and newsletters;	AP,CO,IB,JRCA,GG,IM,WP instructional support materials		- ${ }^{\text {- M S T }}$	74.95
NEWSROOM CLJP ART V. 1 600 graphics for r'se with NEWSROOM	SCHOLASTIC	AP.IB	CA,GG	- E M S T	29.95
PAGEMAKER Full-function desktop publishing system	ALDUS allows user to f	IB,MC frmat individual pages		- - S T	495.00
PAINTWORKS PLUS Drawing program features animation	MEDIAGENIC	AP	CA,GG	P EM S T	79.95
PATTERNMAKER Experiment with creating color patterns	MINDSCAPE to practice balan	$\begin{array}{r} \text { AP } \\ \text { imetry, color, } \end{array}$	CA,GG sign	PEMST	9.95
PIC-BUILDER Complete the 40 build-by-number picture	OPTIMUM RES es or create new pi	AP,AT.CO	CA,GG	P EMST	39.95
PICTURE PERFECT High resolution drawing package	MINDPLAY	AP.IB	CA,GG	P EMST	49.99
PRINT SHOP Create signs, posters, greeting cards, and	BRODERBUND d banners; many	AP,AT,CO,IB CA,GG es of graphics and fonts		P EMST	49.95
PRINT SHOP COMPANION Create graphics for use with PRINT SHOP	BRODERBUND P	AP	CA,GG	P EM S T	39.95
PRINT SHOP GRAPHICS LIBRARY Files of 120 designs for use with PRINT	BRODERBUND SHOP	AP,AT,CO,IB	CA,GG	PEMST	24.95
PRINT SHOP GRAPHICS LIBRARY 3 B Graphics for business, international symb	BRODERBUND bols, mythology,	AP.CO and a 200 of	CA.GG mals	P EM S T	24.95
STICKYBEAR DRAWING Create freehand pictures, make line and	OPTIMUM RES geometric patterns	AP	CA,GG	P .	39.95

Title	Publisher	Computers	Modes	P EM	S T	Price
SUPERPAINT	SILICON BEAC	MC	CA,GG	- EM	S T	149.00
Graphics program combines draw and paint functions						
SUPERPRINT	SCHOLASTIC	AP	CA,GG	P E	- T	59.95
Graphics package features ve $\mathrm{H}_{\text {j }}$ large posters						
TAKE 1: ANIMATION GRAPHICS	BAUDVILE	AP,CO	CA,GG	- E M	S T	59.95
Accepts previously created graphics into a slide show for presentation						
TOP DRAW	STYLEWARE	AP	CA,GG	P E M	S T	99.95
Graphics development tool for creating structured graphics and drawings in color on the IIGS						
TOY SHOP	BRODERBUND	AP,CO,IR,MC	CA,GG	- E M	S T	49.95
Twenty mechanical models to customize and print						
VIDEOWORKS II	BRODERBUND	MC	CA,GG	- E M	S T	60.00

BUSINESS EDUCATION - ACCOUNTING/BOOKKEEPING

Title	Publisher	Computers	Modes	PEMST	Price
AUTOMATED ACCOUNTING	SW PUB	AP,CO,IB,TR	SI,TU	- S	64.50
Complete package for high school accounting instruction					
INTEGRATED ACCOUNTING	BEDFORD SOFT	IB,MC	DE,SI,TU	- - S	349.00
General-purpose accounting packag	with student guide	cises			

BUSINESS EDUCATION - ECONOMICS

Title	Publisher	Compaters	Modes	P EM		Price
ELECTRONIC MONEY	MECC	AP.CO,IB	DP,SI,TU	- E M		36.00
Practice in recognizing specific uses of electronic money transactions in business						
MARKET PIACE, THE	MECC	AP, CO,IB,TC	EG, SI	- E M		39.00
Economic simulations include selling apples, plants, lemonade, and bicyeles						
WHATSIT CORPORATION	SUNBURST	AP,CO,TR	,EG,PS,SI	- E M	S	59.00

Use math skills to make group decisions to operate competitive businesses
BUSINESS EDUCATION - TYPING
Title Publisher Computers Modes PEMST Price

see also KEYBOARDING section

ALPHABETIC KEYBOARDING SW PUB AP,IB,TR DP.TU - - M S - 89.50

Beginning through intermediate exercises to introduce keyboard; drills and timed drills
TYPING TUTOR $N \quad$ SLMON \& SCHU AP,CO,IB DP - M S - 49.95

Instruction on finger placement; drills for speed and accuracy

COMPUTERS

Publisher
SCHOLASTIC'S PFS: FILE AND REPORT SCHOLASTIC
AP.IB
DB

- - M S T
99.95

Database program with application files for students
SPECTRUM: PATTERNS AND PROGRAMS SUNBURST
AP EG,PS

- M S -
55.00

Logic game using hidden pattem of colored bars; introduces fundamental programming skills
STUFF AND FETCH MECC AP DB,PS,WP - E M S - 45.00

Use built-in word processor to put information into the database and retrieve it
SURVEY TAKER SCHOLASTIC AP DB,SH,SI - EM S T 2995
Allows development of 50 -question survey to be completed on-line; results may be graphed

TERRAPIN LOGO	TERRAPIN	AP	CP,PS	P E M S T	99.95
Version of M.I.T. Logo					

TRIVIA MACHINE MECC
AP DB,EG,PS,SI - E M S - 49.00
Trivia game for developing data base thinking skills and keyword searching skills

TURBO PASCAL	BORLAND	AP,B	CP,PS	- M S T	49.95
Inexpensive Pascal implementation; executes very rapidly					
TURBO PASCAL MAC	BORLAND	MC	CP, PS	$\because \subset$	39.95
Pass - language for the Macintosh					
TURTLE TRACKS	SCHOLASTIC	AP, AT, CO, IB	CA, C, P, PS	P E	59.95
Use simple keyboard commands to create shapes and music					
VOYAGE MIMI: INTRO TO COMPUTING	HOLT R\&W	AP	G,PS,SI,TU	- E M	122.25

Explores programming and geometric concepts

ELECTRONIC PERIODICALS

Title	Publisher	Computers	Modes	P E M			Price
MICROZINE SUBSCRIPTION	SCHOLASTIC	AP	CA,EG,Ir,SI	- E M	S	-	169.00
Five disks per year; four programs per disk; new Twistaplot and utility on each disk							
NEWSQUEST	TIME	AP,IB	DP,IT	- - M	S	-	89.95

HEALTH

Title	Publisher	Computers	Modes	PEMST			Price
ALCOHOL THE PARTY'	MARSHWARE	AP	SI,TU	- M	3	-	49.95
Reaction time is displayed as program simulates varying quantities of alcohol consumption							
BODY ELECTRIC	HRM SOFTWR	AP,CO,IB,TR	IF	- -	S	-	450.00
Use an interface card and electrodes to measure electrical activity from four areas of the body							
HEALTH AWARENESS GAMES	HRM SOFTWR	AP, CO,IB,JR,TR	DE,EG,SI	- - M	S	-	99.00
Displays risk factors and longevity for a variety of beheviors							
HEART ABNORMALITIES AND EKG:;	FOCUS	AP	DETU	- . M	S	-	75.00

Demonstrate normal and abnormal EKG'S and heart abrormalities caused by different conditions

INSTRUCTIONAL TOOLS - CLASSROOM MANAGEMENT

Title	Publisher	Computers	Modes	PEMST	Price
CSL MARKS	CHANCERY SOF	AP,MC	IM	\ldots	-
Complete teacher grade book program					98.00

INSTRUCTIONAL TOOLS - DATABASE

Title	Publisher	Computers	Modes	P EMS T	Price
FRIENDLY FILER	GROLIER	AP,IB	DB,PS	- E M S T	59.95
Designed-for-education database; includes instructional materials					
HYPERCARD	APPLE	MC	AU,DB,GG	- EMST	49.00
Multi-media authoring and database program APPLE MC AU,DB,GG - E M S T 49.00					
LOTUS 1-2-3 LOTUS IB DB,SD,WP - - S T Integrated spreadsneet, database, and word processor					
MASTERTYPES FILER MINDSCAPE AP,CO,IB DS Database program with application files for sndents					
$\begin{array}{lllll}\text { SCHCLASTIC'S PFS: FILE AND REPORT SCHOLASTIC } & \text { AP,IB } & \text { DB } \\ \text { Database program with application files for students }\end{array}$					
INSTRUCTIONAL TOOLS - GRAPHICS GENERA」OK					
Title	Publisher	Computers	Modes	PEMST	Price
AWARD MAKER PLUS BAUDVILE AP,IB,MC OG P E M S T 39.95 Create certificates with personalized messages					
BLAZING PADDLES BAUDVILLE AP,CO CA,GG $-E M \Delta T$ Tool for creating computer art; includes graphics library					
CLIP ART COLLECTION V. 1 SPRINGBOARD Collection of graphics for NEWSROOM					
CLIP ART COILECTION V. 2 SPRINGBOARD Collection of graphics for NEWSROOM					
COLOR ME: COMPUTER COLORINGKIT \quad MINDSCAPE AP CA.GG P E - T 29.95					
CREATE WITH GARFIELDCreate cartoons with Garfield characters; can be printed \quad CO \quad CA.GG \quad P E M - $\quad 29.95$					
CRICKET DRAW CRICKET SW MC CA,GG.IM $-M_{\text {S }}$ Full-featured graphics tool with many advanced features $\quad 295.00$					
$\begin{array}{llllll}\text { CRICKET GRAPH } & \text { CRICKET SW } & \text { MC } & \text { GG,IM } & \text { - M S T } & 195.00\end{array}$					
SPINNAKER AP,AT,CO,IB CA,CP,PS P E M $-\ldots$ Create colored designs by using simple commands 49.95					
EASY GRAPH GROLER		AP,CO,IB,JR	GG,TU	- E M S T	49.95

Produce pictographs, pie charts, and bar graphs; includes instructional materials

Title	Publisher	Computers	Modes	PEMST			Price
TOP DRAW	STYLEWARE	AP	CA,GG	- . M	S	T	99.95
Development tool to create structured graphics and drawings in color on the IIGS							
TURTLE TRACKS	SCHOLASTIC	AP,AT,CO,IB	CA,GG,PS	P E			59.95
Use simple keyhosr ! commands to create shapes and music AP,AT,CO,B CA,GG,							
VIDEOWORKS II	BRODERBUND	MC	CA,GG	- E M	S	T	60.00
Draw and animate objects; full editing by trames (includes brief, stylized nude sequence)							
WALT DISNEY COMIC STRIP MAKER	SUNBURST	$A P$	CA,Gr	- E M	S		75.00

INSTRUCTIONAL TOOLS - LNSTRUCTIONAL MATERIALS GENERATOR

Title	Publisber	Computers	Modes	PEM	S T	Price
ARBPLOT	CONDUT	AP	DETU	- - -	S	125.00
Demo of curve ploting, limits and derivatives, integration, sequences, series, and finding of roots						
BANK STREET MUSICWRITER Create music and print the score	MINDSCAPE	AT,CO,IB	CA,IM	P E M	S -	49.95
CERTIFICATE MAKER Design and print professional-looking	SPRINGBOARD certificates	AP,AT, $20, I B, M C$	GG,IM	P E M	S T	39.95
Collection of graphics for NEWSROOM						
CLIP ART COLLECTION V. 2 Collection of graphics for NEWSROOM	SPRINGBOARD M	AP,CO,IB	GG,IM	- E M	S T	39.95
CRICKET DRAW Full-featured graphics tool with many ad	CRICKET SW advanced features	MC	CA,GG.IM	- . M	S T	29500
Ful!-featured package to produce graphs and charts						195.00
CROSSWORD MAGIC Generate crossword puzzles from user's	MINDSCAPE words; play on-s	AP,AT,CO,IB en or print puzzles	EG,IM,SH	- E M	S T	49.95
Desktop publishing program for production of flyers and newsletters						59.95
NEWSROOM PRO Desktop publishing program for product	SPRINGBCARD tion of flyers and	IB ewsletters	IM	- . M	S T	129.95
Full-function desktop publishing system allows user to fully format individual pages						495.00
PC STORYBOARD Graphics presentation program with anim	IBM mation and speci	effects IB	GG,IM	E M	S T	350.00
POWER POINT Graphics program for designing presenta	MICROSOFT tation screens or	MC rhead transparencies	GG,IM	-	S T	395.00
PROFESSIONAL SIGN MAKER Produce letters for signs, overhead trans	SUNBURST sparences, etc.	AP	GG,IM	-	S T	65.00

INSTRUCTIONAL TOOLS - SPELLING CHECKER

Title	Publisher	Computers	Modes	P E M S T	Price
MECC SPELLER	MECC	iP	SK	- E M S T	45.00

IN: 「RUCTIONAL TOOLS - SPREADSHEET

Title	Publisher	Computers	Modes	P E M	S T	Price
APPLEWORKS Integrated word processor, spreadsheel,	CLARIS database	AP	DB,SD,WP	- M	S T	175.00
EDUCALC Designed-for-education spreadsheet; ircl	GROLIER des tutorial and	AP,CO,IB,JR tional materials	PS.SD.TU	- E M	S	59.95
EXCEL Full-function spreadsheet with graphics	Microsoft	MC	SD	-	- T	395.00
LOTUS 1-2-3 Integrated spreadsheet, database, and wor	LOTUS d processor	TB	DB,SD.WP	- -	S T	495.00
MICROSOFT WORKS Integrated prog:ar: includes word proce *INSTR	MICROSOFT or, database, s CTIONAL TO	- STUDENT S	B,SD,TC.WP nunications UDY AID*	- -	S T	295.00
Title	Publisher	Computers	Modes	P EM		Price
A-PLUS: THE HOMEWORK SOLUTION Integrated scheduler, database, and word	AVTEK CORP processor as an	iB al study tool	DB,IM,WP	- M	S	85.95
HOMEWORKER Integrated textwriter, outliner, flash-card	DAVIDSON ker, calculato	AP.IB dar, and grade	DB,IM,WP per	- - M	S	89.95

INSTRUCTIONAL TOOLS - TELECOMMUNICATIONS

INSTRUCTIONAL TOOLS - WORD PROCESSOR

LANGUAGE ARTS

Title Publisher Computers Modes PEMST Price
see also INSTRUCTIONAL TOOLS - INSTRUCIIONAL MATERIALS GENERATOR section see also INSTRUCTIONAL TOOLS - SPELLING CHECKER section see also INSTRUCTIONAL TOOLS - WORD PROCESSOR section

ACE REPORTER	MINDPLAY	AP	EG,SI	P	

ADVENTURE CONSTRUCTION SET ELECTR ART AP.CO,IB CA - E M S . $4 y .25$

Users write and illustrate their own adventure games
ALICE IN WOND ERLAND HRM SOFTW
A series of adventures to stimulate and develop problem-solving and writing skills

New version of BSW with thesaurus and spell checker; includes instructional materials
BE A WRITER! SUNBURST AP CA P - . . 59.00

Lessons to use with MAGIC SLATE II; descriptive, narrative, and explanatory writing
CHARIOTS, COUGARS. AND KINGS HARTLEY AP DP,SH,TE PE . . 39.95

Practice with comprehension skills, detail, and sequence; record keeping; editing option
COMPARISON KITCHEN
DLM AP DP.EG
p
Six games reinforce pre-reading and math skills of visual perception and discrimination

Title	Publisher	Computers	Modes	PEMST	Price
COMPUTER CROSSROADS Crente adventures, make decisions, and	EDLLAC.TV d practiar :reading	AP mprehersion skills	DP.PS	E	99.95
CREATE WITH GARFIELD Create cartoons with Garficid character	DLM rs; can be printed	CO	CA,GG	EM . -	29.95
CROSSWORD MAGIC' Generate crossword puzzles from user's	MINDSCAPE s words; play on-sc	AP,AT,CO,IB en or print puzzies	DP.EG.IM.SH	- EMST	49.95
ELECTRIC WRITING A variety of writing activities for use	CREATIVE PUB with BSW, APPLE	AP RKS, and other wo	CA.WP d processors	- 「 M	26.95
ENGLISH ACHIEYEMENT /-V Practice preparing for portions of the	MINDSCAPE CEEB English con	AP,CO,IB,JR,PE osition achievement	DP,TU	- - S	199.75*
EXPLORE-A STORY SERIES Read and rearrange stories or create ne	DCHEATH w stories: incluces	aphics AP	PS,TU	P E	720.00*
FAY'S WORD RALLY Reinforces sight words, sentence comp	DDATECH prehension, vocab	AP,CO and reasoning sk	BG	P -	49.95
FIRST DRAFT Plarning, outlining, and writing tool:	SCHOLASTIC can be used with	OS-based word proce	CA.WP cessors	PEMS	69.95
FIRST-LETTER FUN Practice letters with leginning sounds	MECC of words corresp	g to pictures in	DP, EG	P	55.00
FREDWRITER A word processor with a tutorial and pr	SOFISWAP prompted writing act	AP	CA, WP	- E M S T	40.00
FUN FROMA TO 2 Letter discrimination, match uppercase	MECC and lowercase letreas	AP and create pictures	CA,EG	P -	55.00
GETTING READY TO READ AND ADD Drill in letter, number, and shape recog	SUNBURST gnition	AP.AT.CO,IB,JR	DP.EG	P .	59.00
GHOST WRITER Writing analysis tool to encourage stud	MECC dents to improve	ir composition skill	SK.TIIWP	- . S Γ	90.00
GRAMMAR GREMLINS Comprehesive grammar program with n	DAVIDSON rules and a variety	AP,IB reinforcing activi	$\begin{gathered} \text { DP.EG } \\ \text { s; editing op } \end{gathered}$	- EMS	49.95
HINKY PINKY GAME Guess rhyming words from hints and d	MINDSCAPE definitions: three	AP ls; editing option	EG	P EM S	39.95
I CAN WRITE! Twenty-nive lessons for use with 20 -colu	SUNBURST umn MAGIC SLAT	AP	CA,WP	P -	59.00
JACK AND THE BEANSTALK Animated adventure game challenges pr	HRM SOFTWR roblem-solving an		EG.PS	P E M	39.95
LETTERS AND FIRST WORDS Letter recognition skills and short word	C \& C SOFT ds: reinforce basic	$\text { nguage skills } A P$	DP.EG	P .	50.00
LISTEN TO LEARN Full-function word processor with speec	IBM ch capability: :nc	$\underset{\text { instructional sup }}{\text { IB }}$	WP materials	- E M	156.00
LOGOWRITER Integrates word processing with a versio	LCSI on of the Logo p	AP.IB.JR mming language	CP.GG.WP	P EMST	450.00

MAGIC SLATE SUNBURST AP WP PEMST 89.95

Designed-for-education word processor with 20,40 , or 80 columns; inc. instructional materials
MASTER SPELL MECC AP DP,SH,TU PEMS T 59.00

Design word lists and lessons to fit individual needs; records misspelled words for review
MECC WRITE START MECC AP DP,TU,WP - M S - 29.00

Activities using MECC WRITER to share ideas, experiment with words, and write stories or poems
MUPPET WORD BOOK, THE SUNBURST AP DP P . . . 65.00

Muppet characters introduce letters, words, and simple writing ikilis
MUPPETVILLE SUNBURST AP DP P . . . 65.00

Kermit explores colors, shapes, numbers, and patterns in Muppetville
NEWBERY ADVENTURE: SUNBURST AP DP,EG P E . . 65.00

CHARLOTTE'S WEB

Development of comprehension skills of main ideas, details, sequencing, and vocabulary

PAINT WITH WORDS

MECC AP CA,EG
P
Develop vocabulary and create pictures; Ufonic voice system optional; can be printed
PERPLEXING PLZZLES HARTLEY AP EG,PS,SH - EM S - 39.95

Use critical reading skills to solve problems; editing option
PHONICS PRIME TIME: MECC AP DP P 49.00

BLENDS AND DIGRA.

Practice with identification of 34 consonant blends and digraphs
PHONICS PRIME TIME: FINAL CONSONAN. MECC AP DP P . . . 5. . 0
Practice with letter identification of everyday words
PHONICS PRIME TIME: INITIAL CONSONAN. MECC AP DP P 55.00
Practice with letter and word identification
PHONICS PRIME TIME: VOWELS I MECC AP DP P - . . 49.00
Practice with identification of twelve long and short vowel sounds in simple words
PHONICS PRIME TIME: VOWELS II MECC AP DP P - . . 49.00

Practice with identification of "r-controlled," "rule-breakers," and common diphthongs
PLAYWRITER'S THEATER EDTECH AP EG,PS,SI,WP - E M - 98.00
Select characters, actions, scenes, and phrases to create plays; requires Ufonic voice system

Title	Publisher	Computers	Modes	P E M	S	Price
PLAYWRi. ER: SERIES Use writing and graphics activities to cr	GROLIER eate books	AP,CO,IB	CA	P E M		39.95
POETRY EXPRESS Line-by-line guidance encourages students	MINDSCAPE to write and p	poetry; inciudes	CA,TU	P E M		49.95
PUZZIER Use reading strategies of predicting and	SUNBURST confirming; sre	AP,CO,IB,IR,TC individual or group	DP,EG,PS mpositions	- E M	-	59.00
READER RABBIT Four games with graphics to practice lette	TLC and word rec	$\mathrm{AP}, \mathrm{CO}, \mathrm{IB}, \mathrm{JR}$ ion	DP,EG	P -		39.95
READING FOR INFORMATION LV. II-N Read charts to answer questions; reading	arguments	IB, JR	DP,TU	P E M	-	340.c0*
READING FOR MEANING LV. I-N A variety of reading comprehension activ	$\text { vities } \quad \text { IBM }$	I8	PS,TU	- E M	-	480.00*
READING WORKSHOP, THE Activities and problems to introduce shor	MINDSCAPE rt stories	AP	DP	- E M	- -	425.00
SHOW TIME Make corrections in script and theater dir	MECC rections to creat	AP	CA	- - M	S	55.00
SOCMATE A series of games to teach synonyms, an	AGS tonyms, and ho	AP	EG,PS	P E M	S	44.95
SOUND IDEAS SERIES Teaches short and long vowels, consonan	HOUGHTON ts, and word att	skills AP	DP,TU	P -	- -	348.00*
STICKYBEAR ABC Three games present word identification,	PTIMUM RES order, and match	AP,CO	DP,EG	P - -	- -	39.95
STUDENT STORIES Eighteen stories use students' names to de	MECC evelop reading s	AP	CA	P - -	- -	45.00
SUPER SCOOP II Pre-wniting activities help students investi	COMPRESS gate and write	story AP	SI	- - S	S	65.00
TALKING TEXT WRITER Full-function word processor with speech	SCHOLASTIC capability; inc	AP,IB,JR instructional sup	$\begin{array}{r} \text { WP } \\ \text { t materials } \end{array}$	P EM	- -	199.95
THOSE AMAZING READING MACHINES Reading comprehension skills of sequencin	I-V MECC ing and detail a	$\begin{array}{r} \text { AP } \\ \text { eloped with "wa } \end{array}$	CA,EG,PS machines"	P E -	-	275.00*
WALLY'S WORD WORKS Parts of speech are presented within the	SUNBURST context of sente	AP,CO paragraṇhs	CA,EG	- EM S	S T	75.00
WALT DISNEY COMIC STRIP MAKER W:iting skills are developed through comi	SUNBURST ic strips	AP,CO	CA,EG	- EM S	S T	75.00
WINNIE THE POOH IN 100 ACRE WOOD Read directions and maps to find objects in	SUNBURST the woods; pra	$\begin{gathered} \text { AP,CO } \\ \text { recall and infer } \end{gathered}$	EG,PS	P E - .	- -	49.95
WORD HERD: LOOK LIKES Twelve sets of similar-looking words are	MECC mastered throug	tice in spelling	DP aning, and	- . M S	S	45.00
WORD HERD: SOUND ALIKES Twelve sets of homophones are mastered th	MECC hrough definitio	AP nd usage in senten	DP	- M S	S	45.00

Title
Publisher
Computers
Modes
PETS
Price
WORD MUNCHERS
MACC AP
DP,EG
PE
55.00

Practice skills of recognizing vowels, dipthongs, and digraphs
WORD WIZARDS AEC AP DP,SH P EM - . 59.00

Four graphic spelling and vocabulary activities; editing option
WORD-A-MATION SUNBURST AP DP,EG,PS - EM S - 65.00
Develop vocabulary skills by transforming words from the beginning and ending of a word chain
WORDS AT WORK: CONTRACTION ACTION PEC AP DP PE - - 49.00
Practice in identification, spelling, and meaning of more than 50 contractions
WKITE ON! SERIES HUMANITIES AP PS,TU,WP PE - - 1955.00*
Data disks with writing activities to be used with standard word processors
WRITER RABBIT TLC AP, IB CA,DP,EG PE - . 54.95

Tool for writing skills and reading comprehension
WRITERS HELPER II CONDUIT AP,IB,JR,MC,PS TU,WP - - S - 120.00
Guides students in creating and organizing ideas, writing, and evaluating their writing
WRITING A CHARACTER SKETCH AEC AP DP,SH,TU - - . S - 49.00

Introduces fiction and non-fiction character development by use of examples and questions
WRITING A NARRATIVE AEC AP DP,TU - M S - 49.00

Uses brainstorming, listing, and idea-organizing to d :velop narrative framework and point of view
WRITING AN OPINION PAPER AEC AP TU - - S - 55.00

Distinguishing between fact and opinion, and the evidence needed to support an opinion
WRITING WORKSHOP, THE MILLIKEN AI TU,WP - EM ST 450.00*

Complete program with instructional materials: prewriting, word processor, and post-writing
LIBRARY MEDIA SKILLS

MATHEMATICS - ADVANCED MATHEMATICS

Publisher	Computers	Modes	PEMS T	Price
GROLIER	AP,CO,IB,JR	PS,SD,TU	-EM S	59.95

EDUCALC TEMPLATES GROLIER AP,CO,IB,JR PS,SD - EM S - 19.95

Spreadsheet files for use with EDUCALC

EQUATIONS I MINDSCAPE

AP,AT,CO,IB,PE DP,TU - - M S .
34.95

Practice solving equations of the furm $a x+b=c$
EQUATIONS II MINDSCAPE
AP,CO,IB,TR DP,TU
34.95

Practice solving equations of the form $a x+b=c x+d$
EXPLORING TABLES AND GRAPHS I OPTIMUM RES
AP EG,GG,TU - EMS -
34.95

Introduce the use of graphs; includes tool to construct graphs for a given set of data
EXPLORING TABLES AND GRAPiS II OPTIMUM RES AP EG,GG,TU - EM S - 34.95

Real-life applic ons of tables and graphs; picture, bar, line, and area graphs

Practice in graphing linear and quadratic equations; game format
GREEN GLOBS \& GRAPHING EQUATIONS SUNBURST
AP,IB DE,EG,GG,PS - M S T
65.00

Practice in graphing linear and quadratic equations; game format
INTERPRETING GRAPHS SUNBURST AP,IB DE,DP,EG - EM S - 65.00

Practice in making meaningful intrepretations of graphs of physical phenomena
KINGS RULE, THE SUNBURST AP.CO.IB.TC.TR EG,PS - EM S - 59.00

Form and test hypotheses, recognize patterns, and develop problem-solving skills
MATH SEQUENCES, REVISED MOLIKEN AP,AT,PE,TR DP PEM - 495.00*

Number readiness and four arithmetic operations with integers, fractions, and decimals

MATHGRAPHER
 HRM SOFTWR
 AP,CO
 DETU
 - EMS .

Demz:strates properties of functions and graphing concepts
MICROSOFT MU.MATH MICROSOFT AP.IB,TR PS
PS
Performs algebra, trig, calculus (differentiation and integration), and transcendental functions

QUATIONS

SCHOLASTIC
AP DP,EG,PS
. . M S
Math game, based on SCRABBLE, where students build equations rather than words
ROYAL RULES
SUNBURST
AP,IB EG,PS,SH.SI

- EMS -
75.00

Form/test hypotheses, recognize patterns, develop problem-solving skills, and design challenges

SEMCALC	SUNBURST	AP,AT,TR	DP,PS,TU	-	M	S	.	95.00
Tool to develop strategies for interpreting word problems in mathematics								
. SUPERPLOT	EDUSOFT	AP	DE,GG	.	- M	S	T	49.95

Graphs any polynomial, trigonometric, logarithmic, or exponential function

Title	Publisher	Computers	Modes	P EMS T	Price
TOBBS IEARNS ALGEBRA	SUNBURST	AP	DP.SI	. M S -	59.00

MATHEMATICS - GEOMETRY/MEASUREMENT

Title Pu	Publisher	Computers	Modes	P EMS	S	Price
GEOMETRY BROD	RODERBUND	MC	DP.GG,TU	- - M	S	109.95
Manipulate geometric figures to create proofs; full-year geometry course						
GEOMETRY ALIVE!	ED'L ACTV	AP,IB,JR	TU	- EM	S	159.00
Introduces geometric concepts						
MONEY AND TIME ADVENTURES LOLLIPOP SVEThe Lollipop dragon tesches abou: time and money						
PATHFINDER SUNBURST AP,IB EG,PS Read and interpret graphs, and design routes for the ball to traverse						
'? LANE VIEWAnalyze top and bottom perspectives to determine the path of a block AP,CO \quad PS,SI - E M S - 65.00						
RIGHT TURN, THE SUNBURST AP,CO,IB,JR EG,PS Rotate and flip figures on a three-dimensional grid E M S - 59.00						
SUPER FACTORY, THEExperiment with designs on a cube by using spatial geometry; 3-D version of THE FACTORY - EM S - 59.00						
TEDDY'S PLAYGROUND SUNBURST AP DP.EG P Practice in visual discrimination and analogies						
TIME EXPLORERS GAMCO AP,CO,TR DP,EG P E \ldots 44.95 Games for two players provide drill in relling time						
VOYAGE MIMI: MAPS AND NAVIGATION HOLT R\&W AP EG.PS.SI.TU - E M - - 122.25Apply mapping and navigational skills to rescue distressed whales						
MATHEMATICS - NUMBER						
Title Pub	Publisher	Computers	Modes	P EMS		Price
see also INSTRUCTIONAL TOOLS - INSTRUCTIONAL MATERIALS GENERATOR section						
ADDITION MAGICIANA set of games to provide practice in problem solving \quad AP,CO,IB,TC \quad DP,EG,PS \quad P E \quad. $\quad 34.95$						
Introduces two methods of dealing with fractions; game format for practice						
$\begin{array}{ll}\text { ARITHMETIC CRITTFPS } \quad \text { MECC } & \text { AP } \\ \text { Four games: addition, subtraction, measurement, and counting from } 1 \text { to } 99\end{array} \quad$ DP,EG $\quad \mathrm{P}-\ldots-\quad 55.00$						
HOUGIITON AP DP Drill on basic arithmetic facts in all four operations						

Title	Pablisher	Computers	Modes	PEMSTM	Price
HOW THE WEST WAS ONE + THREE X FOUR	SUNBURST	AP	EG,PS	- EM S -	65.00

Form and test hypotheses, recognize patterns, and develop problem-solving skills

Series of programs in a game format to reinforce mathematics skills
MATH PRACTICE LV.I IBM IB.JR.PS DP P E M - 76.00

Practice with arithmetic operations using whole numbers, common fractions, and decimals

Presents Polya's problem-solving model and provides practice in solving s: rry problems

Six musical games use animation to present and reinforce counting and number concepts

Publisher Computers Modes

PEMST I'rice
SURVIVAL MATH SUNBURST AP,AT,CU,TR DP,EG,PS,SI - EM S - 55.00
Includes HOT DOG STAND, an economic simulation of sales at a ball game
SWEET SHOPPE DCHEATH AP,CO DP,EG P - - 45.00

Three games for single-digit addition, subtraction, and counting
TEASERS BY TOBBS SUNBURST AP,AT,CO,IB,TR DE,DP,EG,PS
Two programs to practice logical approaches to solving addition and multiplication problems
UNDERSTANDING WORD PROBLEMS SVE AP DP,TU - E - - 99.00

Multi-media approach to problem solving: filmstrips, skill sheets, and computer programs
VOYAGE MIMI: ECOSYSTEMS HOLT R\&W AP PS.SI
Keep humans alive on an island by selecting food web from land, plant, and animal species
WHATSIT CORPORATION SUNBURST AF,CO,TR DP,EG,PS,SI
Use math skills to make group decisions to operate competitive businesses
WHOLE NUMBERS: ADD. AND SUB. HOUGHION AP DP
Practice whole number add. and sub.; includes pretesting, remediation, and mastery testing
WHOLE NUMBERS: MULT. AND HOUGHTON AP
DIVISION
Practice whole number : :ult. and div.; includes pretes:ins, remediation, and mastery testing

MATHEMATICS - PROBZEM SOLVING

MATHEMATICS - STATISTICS

Tâtle	Publisher	Computers	Modes	P EM	S		Price
MUSIC FUNDAMENTALS I	SILVER	CO	CA.DP	- E M	S		43.50
Introduction to keyboard: read music and play on one octave keyboard							
MUSIC SHOP	BRODERBUND	CO	CA	- EM	S	.	49.95
User can create, play, and print misical compositions							
MUSIC STUDIO	MEDIAGENIC	AP.CO	CA	- E M	S	.	34.95
Create, edit, and record music on an Apple IIGS; uses a MIDI interface 3 A.CO M M . 34.95							
MUSIC THEORY	MECC	AP	CA,DP	- E M	S	.	49.00
Eighteen programs to drill on terms, notation, rhythm, pitch, chords, and scales CA,DP - E M S 49.00							
MUSICWORKS	SPINNAKER	MC	CA	- E M	S	T	79.95
Create, play, and print musical scores MC - EM S T 79.95							
POLYWRITER	PASSPORT	AP	CA	- E M	S	-	299.95
Notes on = MIDI keyboard are translated into musical notation; can display, edit, and print - E M - 299.95							
Sequential approach to music theory; textbook, disk, and workbook							
Error recognition in a harmonic context of four-voice chords							
SONGWRITER		AP.AT,CO,IB	CA,DP	- E M	S	-	39.95
Compose and rewrite complicated metodies without using musical notation - EA, MP - 39.95							
SOUND TRACKS	MECC	AP	CA	P E	-	-	55.00
Compose melodies and experiment with line, shapes, pictures, and colors							
TONEY LISTENS TO MUSIC	TEMPORAL	AP	DE,DP,EG	P E M	S	-	90.00

PRESC:IOOL/EARLY CHILDHOOD

Title	Publisher	Computers	Modes	PEM	S		Price				
EARLY GAMES FOR YOUNG CHILDREN	SPRINGBOARD	AP.CO,IB,MC	DP.EG	P	-		34.95				
Introduces sinapes, letters, drawing, addition, and subtraction											
EARLY GAMES MATCHMAKER Sequenced games to prat ce matching 1 ERNIE'S MAUIC SHAPES Pre-reading skills; matching like shapes	SPRRNGBOARD like and different	AP,CO	EG.PS	P -			29.95				
	MINDSCAPE	CO.JR	DP,EG	P	-		34.95				
FIRST R MILLIKEN Phonetically-based word recognition program		AP	TU	P		-	95.00				
FIRST-LEETER FUN MECC AP DP.EGPractice letters with beginning sounds of words corresponding to pictures in the story				P . . -		.	55.00				
FISH SCALES	DLM	skills AP	DP,EG	P		-	29.95				
Six games with music and graphics to practice measurement skills											
FUN FROM A TO 2	MECC	$\underset{\text { ctures }}{\text { AP }}$	CA,EG	P - - -		-	55.00				
Letter discrimination. match uppercase and											
GERTRUDES PUZZLES TLC AP,AT,CO,IB,TC Solve puzzles involving recognition of color and shape patterns			EG,PS	P E M -		-	59.95				
GERTRUDE'S SECRETS TLC AP,AT,CO,IB,TC Develop critical thinking skills by finding patuerns in shapes and colors			E'S,PS	P E -			59.95				
GEITING READY TO READ AND ADD SUNBURST Drill in letter, number, and shape recognition		AP.AT,CO.IB.JR	DP,EG	P - - -		-	59.00				
JUGGLES' RANBOW Reinforce the concepts of left and right, above and below		AP,AT,CO,IB,TC	DP.EG	P - - .		-	29.95				
KINDERC M^{\prime} (Six games to help children get ready to read		AP,AT,CO,In,JR	DP,EG	P E - .			29.95				
	Six games to help children get ready to read, spell, and count										
LEARNING ABOUT NUMBERS Practice and reinforcement for counting, LETTERS AND FIRST WORDS Letter recognition skills and short words;	C \& C SOFT		DP.EG	P E - .			40.00				
	simple time tell	and simple arithme									
	C \& C SCFT	AP	DP.EG	P - . -		-	50.00				
	: reinforce basic	guage skills									
LETTERS AND WORDS MINDSCAPE AP,IB,JR DP,EG,TU Alphebetizing, letiz: matihes, and sight words: graphics; editing option; record keeping				P - - .		.	40.05				
MOPIUWN HOTEL TLC AP,AT,CU,IB,TC EG,PS Users identify attribute patterns of Bibbets and Gribbets in this competitive logic game				P E M		-	39.95				
MOPTOWN PARADE TLC AP,AT,CO,IB,TC EG,PS Seven games to practice logical thinking, strategy development, and pa!tern recognition				P E M	-		39.95				
MUPPET SLATE Easy-to-use word processing program featur MUPPET WORD BOOK THE Muppet chracters introduce letters, words,	SUNBURST	$\text { borders } \quad \text { AP }$	WP	P . -	-		75.00				
	uring pictures and										
	SUNBURST	AP	DP	P	- -		65.00				
	s, and simple wr	gh skills		P			65.00				
MUPPETS ON STAGETo reinforce letter, number, and color recog	SUNBURST	AP APPET LEARNI	$\begin{aligned} & \text { CA,DP } \\ & \text { KEYS } \end{aligned}$	P . . . -			99.00				
	gnition; comes										

PROBLEM SOLVING/LOGIC

Title	Publisher	Computers	Modes	P EMST	Price
AI: EXPERIENCE ARTIFICIAL INTELLIGENCE	SCHOLASTIC	AP,IB,TA	PS,SI	- M S T	69.95
Teach the computer game strategies and it learns and plays the game					
ALL SORTS OF MEGGLES	FD TECH	AP	DP,PS	P E	75.00

Practice decision-making skills, testing, and record keeping; requires Ufonic voice synthesizer PE • - 75.00

Decode clues to discover objects; use the mini-author to create new objects

Title	Publisher	Computers	Modes	P EMS	S		Price
GERTRUDE'S PUZZLES	TLC	AP,AT,CO,IB,TC	EG,PS	P E M			59.95
Solve puzzles involving recognition of colo: and shape patterns							
GERTRUDE'S SECRETS	TLC	AP,AT,CO,IB,TC	EG,PS	P E			59.95
Develop critical thinking skills by finding pattems in shapes and colors							
GNEE OR NOT GNEE	SUNBURST	AP,CO,IB,TC	EG,PS	P E M	-		65.00
Game to develop visual discrimination and rule formation based on attributes							
HIDE NSEQUENCE	SUNBURST	AP,CO	IT,PS	- E M	S	T	75.00
Use problem solving strategies to practice sequencing skills in reading and writing							
HIGH WIRE LOGIC	SUNBURST	AP,IB,JR	EG,PS	- E M	S		59.00
Language-based critical thinking game for developing Boolean logic skills							
HOMETOWN: LOCAL AREA STUDY	ACTIVE LEARN	AP,CO,IB	DB,PS,SI	- M	S	-	148.00
Students analyze demographic data relating to their own local information							
HOT DOG STAND	SUNBURST	IB,JR,TC	EG,PS,SI	P EM	-		59.00
Economic simulation of the operation of a hot dog stand at a football game							
IGGY'S GNEES	SUNBURST	AP	EG,PS	P E	-		65.00
Practice discrimination strategies to solve increasingly complex problems							
INCREDIBLE LABORATORY, THE	SUNBURST	AP,AT.CO,TC	EG,PS,SI	- EM	S	-	59.00
Design experiments to determine the combination of chemicals needed to produce each monster							
JENNY'S JOURNEYS	MECC	AP	EG,PS,SI	- E	-		55.00
Apply map-reading skills to a drive through a city							
KING'S RULE, THE	SUNBURST	AP,CO,IB,TC,TR	EG,PS	- E M	S		59.00
Form and test hypotheses, recognize patterns, and develop probism-solving skills							
LEGC TCLOGO	LEGO	AP	PS	P E M	S	-	495.00
Uses Lego building blocks with LOGOWRITER to program moveable objects							
LOGIC BUILDERS	SCHOLASTIC	AP	EG,PS	- E M	S		49.95
A series of challenges to improve memory and logic skills							
LOGOWRITER	LCSI	$A^{\text {P }}$.IB,JR	CP,GG,WP	- EM	S		450.00
Integrates word processing with a version of the Logo programming language							
MEMORY CASTLE	SUNBURST	AP,CO,IB,JR,TC	EG,PS	- E M	S	-	59.00
A knight must remember and perform an increasing list of tasks to complete a mission							
MEMORY: A FIRST STEP	SUNBURST	AP,IB,IR	DP,PS	P E	-		250.00
Puppet defines and introduces sequential problem-solving skills; includes non-computer activities							
MIND PUZZLES	MECC	AP	PS,SI	- - M	S	-	49.00
A set of graduated puzzies and tools to practice problem-solving strategies							
MINDSTRETCHER SERIES	ISL SOFTWR	AP,CO,PE	EG,PS	- E M	S	-	200.00*
Ten logic puzzles in game formats; for one or more players A E E M M S							
MOPTOWN HOTEL	TLC	AP,AT,CO,IR,TC	EG,PS	- EM	S	-	39.95
Users identify atribute patterns of Bibbets and Gribbets in this compettive logic game							
MOPTOWN PARADE	TLC	AP,AT,CO,IB,TC	EG,PS	P E M	-		39.95
Seven games to practice logical thinking, strategy development, and pattern recognition							

Title	Publisher	Computers	Modes	PEMST			Price
STORY TREE	SCHOLASTIC	AP, CO, IB	CA,SH,WP	P E M	S	T	59.95
Three interactive stories; word processor for creating aduatonal branching stories							
SUPER FACTORY, THE	SUNBURST	AP,CO,IB,JR,TC	CA,CP,PS,SI	- E M	S		59.00
Experiment with designs on a cube by using spatial geometry; 3-D version of TIIE FACTORY							
TEASERS BY TOBBS	SUNBURST	AP,AT, CO,IB,TR	DP,EG,PS	- E M	S		59.00
Two programs to practice logical approaches to solving addition and multiplication problems							
TEDDY'S PLAYGROUND	SUNBURST	AP	DP,EG	P	-		59.00
Practice in visual discrimination and analogies							
TEN CLUES	SUNBURST	AP	AU,EG,PS	P EM	S		65.00
Mini-authoring program stressing critcal versus variable attributes							
THINK QUICY	ILC	AP	EG,PS	P E M	-		69.95
Practice problem-solving skills while moving through a maze to coilect parts of a puzzle							
Mini-authoring system allows teachers or studen's to develop HOLLYWOOD SQUARES game Pr P M S T 39.95							
TIP N FLIP				P EM	-		65.00
Practice discrimination skills by finding similarities and differences in patterns and orientations							
TONK IN THE LAND OF BUDDY-BOTS	MINDSCAPE	AP,CO,IB	EG,PS	P E	-		19.95
Practice visual discrimination, concentration, memory, and problem-solving skills							
TRADING POST	SUNBURST	AP,CO,IB,JR,TC	EG,PS	P E M	-		59.00
Game for two students to reinforce visual discrimination, rule formation, analysis, and planning							
TRIVIA MACHINE	MECC	AP	DB,EG,PS,SI	- E M	S		49.00
Trivia game for developing data base thinking skills and keyword searching skills							
Game practice in pattern recognition AP,CO EG,PS - M S 39.95							
V'HATSIT CORPORATION	SUNBURST	AP,CO,TR	DP,EG,PS,SI	- E M	S		59.00
Use math skills to make group decisions to operate competitive businesses							
WHERE IN USA IS CARMEN SANDIEGO?	GRODERBUND	AP	EG,PS,SI	- E M	S		44.35
Use FODOR'S GUIDE TO THE USA to search the USA and capture the criminal							
WHERE IN WORLD IS CARMEN SANDIEGO?	BRODERBUND	AP	EG,PS,SI	- EM	S	-	49.95
Use THE WORLD ALMANAC to search the world and capture the criminal							
ZOYON PATROL	MECC		EG,PS,SI	. - M	S		55.00

SCIENCE • ASTRONOMY

Title	Publisher	Computers	Modes	P EM	S	Price
BANK STREET SCHOOL FILER: SPACE Database file has information on planets	SUNBURST s and the history		DB,PS	- - M	S	59.00
PLANETARY CONSTRUCTION SET Two activities have students expeiment,	SUNBURST explore, and cr	for speci	EG,PS,SI ife forms	- - M	S	59.00
SKY LAB Simulate the motion of the sun, constell	MECC lations, and plan	AP ve to the ear	DE,SI.TU	- E M	-	55.00
SKY TRAVEL Present planetarium-type sky displays for	COMMODORE any longitude,	time, and da	DB,DE,SI	- .	S	29.95

SCIENCE - BIOLOGY

Use an interface card and electrodes to measure electrical activity from four areas of the body

BODY TRANSPARENT Three activities about human body parts,	BRITANNICA function, and placement	AP,CO,IB	DP,TU			S	39.95
BOTANICAL GARDENS	SUNBURST	AP	PS,SI			S	59.00

Simulate plant growth by controlling temperature, light, water, and food

CARDIOVASCULAR FITNESS LAB HRMSOFTWR AP,CO,IB
 Use the computer as a laboratory monitor of cardiovascular activity

CATGEN
CONDUTT
AP
PS,SI - . M S

Title	Publisher	Computers	Modes	P E M	S	Price
CLASSIFYING ANIMALS WITH BACKBONES	DC HEATH	AP	DB,TU	- - M	S	66.00
Classify zoo animals using a key and animal attributes						
DINOSAUR DAYS	TYC	AP	DP,TU	P E	-	39.95
History, physical characteristics, and habitats of dinosaurs AP DP,TU P E - - 39.95						
EXPERIMENTS IN HUMAN PHYSIOLOGY	HRM SOFTWR	AP,IB	IF	- - M	S	325.00
Lab equipment to measure respiration, skin temperature, heart rate, and reaction time						
Interface package for experiments in biology, physics, chemistry, and earth science						
Leam about paleontology by reconstructing a Tyrannosaurus Rex AP PS,TU - E - 75.00						
Demonstrate normal and abnormal EKG'S and heart abnormalities caused by different conditions ${ }^{\text {a }}$ - M S - 75.00						
HUMAN GENETIC DISORDERS H	HRM SOFTWR	AP	PS,SI	- -	S	49.95
Explore the inheritance patterns of 24 known human disorders						
LIF.e SCIENCE DATABASE	SCHOLASTIC	AP	DB	- E M	S	99.95
Data files for PFS: FILE cover bird migration, animals, flowers, anc. drugs 9.95						
LIGHT, PLANTS AND PHOTOSYNTHESIS	S IBM	IB,PS	TU	- - - S	S	52.00
Explore light as energy and the characteristics of light used by chloroplasts in photosynthesis						
MENDELIAN GENETICS	IBM	IB,PS	DP,TU	-	S	52.00
Comprehensive tutorial on Mendelian theory and applications 5						
MICRO GARDENER	EDL ACTV	AP	PS,SI	- E M	-	63.00
Grow geraniums and philodendrons by controlling light, water, temperature, and fertilizer						
Reinforces fundamentals of hearing; covers major parts of the ear, its self-prorection abilities, and sign language						
PATHOLOGY: DISEASES AND DEFENSESDescribes infectious pathogens, causes of noninfectious diseases, body defense, and immunity						
SOLAR FOOD: EXPLAIN PHOTOSYNTHESIS	HRM SOFTWR	AP	SI,TU	- -	S	69.00
Tutorial and simulated experiments to see how light, temperature, and carbon dicxide affect photosymtheris						
TCUCHY SUBJECT MARSHWAREExplore the nervous system through simulated experiments \quad AP \quad TU \quad E - - 39.95						

SCIENCE - CHEMISTRY

Title	Publisher	Computers	Modes	PEMS	Price
Chem lab simulations 1 An acid-base tirration simulation to det	HIGH TECH termine endpoint,	AP,AT ne, and concent	SI	-	100.00
CHEM LAB SIMULATIONS 2 Ideal gas law and entropy simulations	HIGH TECH	AP	SI	- . - S	100.00
CHEMICALS OF LIFE I: STRUCTURE Interactive presentation of Bohr model	IBM of the atom, ener	IB,JR.PS levels, ions, and	c bonding	- -	52.00
COMBINING THE ELEMENTS Explore the composition and character	DCHEATH stics of elements	AP mpounds as the	$\begin{gathered} \text { TU } \\ \text { formed } \end{gathered}$	- M S	75.00
ENZYME INVESTIGATIONS Leam what enzymes are and how they	HRM SOFTWR operate	AP	SI.TU	S	49.95
EXPERIMENTS IN CHEMISTRY Lab interface and probes for conducting	HRM SOFTWR fifteen chemist	AP riments; teacher	ide ${ }^{\text {IF }}$	S	455.00
EXPERIMENTS IN COLORIMETRY Lab interface to graph data entered from	HRM SOFTWR n spectrophotome	AP a photodetecto	IF cher's guid	-	239.00
EXPERIMENTS IN SCIENCE Interface package for experiments in	HRM SOFTWR iology, physics,	AP,IB try, and earth scian	IF	- M S	325.00
INTRO TO GENERAL CHEMISTRY Series of ten supplementary computer	COMPRESS activities for an in	AP,IB ory chemistry	DP,TU	- M S	590.00*
MOLEC: MOLECULAR MODELING Create, edit, display, and manipulate thr	COMPRESS ree-dimensional m	AP	PS,SI	- S	'49.95
MOVING MOLECULES Effect of pressure and temperature on m	HRM SOFTWR molecular motion	AP liquids, solids	PS,SI yle's and	- - - S	49.95
PERIODIC TABLE: COMPUTER ASSISTED	COMPRESS	AP	PS,SI	S	50.00
Two deraonstration programs represent and graph periodic properties of the elements					
PHYSICAL SCIENCE DATABASE Data files for PFS: FILE; chemical com	SCF'OLASTIC pounds, reactions	AP ical testing, glue	DB adhesive	- E M S	79.95
SCIENCE - EARTH SCIENCE					
Title	Publisher	Computers	Modes	P EMS T	Price
ATARILAB STARTER SET Lab interface to measure up to six modul	ATARI les at a time	AT	IF,SI	- - M	99.95
CHANGING EARTH, THE Students collect data, perform tests, and	DC HEATH make decisions	AP analyze the ear	$\begin{gathered} \text { PS,TU } \\ \text { layers } \end{gathered}$	- E M	66.00
EARTHQUAKES Comprehensive program shows relations	IBM hip of earthquak	IB,JR other physical ph	$\begin{aligned} & \text { DP.TU } \\ & \text { omena } \end{aligned}$	- M S	44.00

Title	Publisher	Computers	Modes	P EM	S		Price
EXPERIMENTS IN SCIENCE HR	HRM SOFTWR	AP,IB	IF	- . M	S		325.00
Interface package for experiments in biology, physics, chemistry, and earth science							
FORECAST MINDSCAPE \quad AP,CO,IB,JR \quad DB,PS,SI \quad - M S - 69.95 Make forecasts based on a data base of weather information for the U.S.A.							
Explore relationships among groundwater, the environment, and people $\quad 1 \mathrm{l}$							
HEAT ENERGY DCHEATH Design a shelter to investigate problems of energy efficiency and structural design \quad PS.TU \quad - E M S - $\quad 66.00$							
HYDROLOGIC CYCLE Examine the human impact on the hydrologic cycle IB TU $-\quad . S$. 49.00							
INFORMATION LAB SOFTWARE/EARTH ADD WES AP DB,TUSCIENCE							
Database research tool with tutorial on earth science topics							
MICRO GARDENER EDL ACTV AP PS,SI Grow geraniums and philodendrons by controlling light, water, temperature, and fertilizer							
SCIENCE TOOL KTT 2: EARTHQUAKE BRODERBUNDUse with SCIENCE TOOL KIT master module to measure seismic activity; includes teacher's guide							
		AP	PS,SI	- M	S		49.50
Use research data to predict the eruption of a volcano							
VOLCANOES IBM Describes volcano formation, eruption, and prediction IB,PS SI,TU -							
VOYAGE MIMI: MAPS ANDNAVIGATIONApply mapping and navigational skilıs to rescue distressed whales							

SCIENCE - ENVIRONMENTAL EDUCATION/ECOLOGY

Title	Publisher	Computers	Modes	P EM S T	Price
BANK ST. SCHOOL FILER: ENDANGERED	SUNBURST	AP,CO	DB,PS	- M S	59.60

Database of endangered species worldwide; includes those extinct from 1600 to the present
ENVIRONMENT I: HABTTATSIECOSYSTEMS IBM IB.PS DP,TU
. . - S
52.00

Describes composition of ecosystems and examines effect of abiotic and biotic factors
OH, DEER! MECC AP PS,SI,T
Simulates the five-year management of a large herd of deer in a suburban community

SCIENCE - GENERAL SCIENCE

SCIENCE - SCIENTIFIC METHOD/LAB EQUIPMENT

Title	Publisher	Computers	Modes	P EM	S		Price
ATARILAB STARTER SET	ATARI	AT	IF,SI	- M			99.95
Lab interface to measure up to six modules at a time MT Mr, - M - 99.95							
Use an interiace card and electrodes to measure electrical activity from four areas of the body \quad IF M S - 450.00							
CARDIOVASCULAR FITNESS LAB HRM SOFTWR AP.CO.IB$\begin{aligned} & \text { Use the computer as a laboratory monitor of cardiovascular activity }\end{aligned}$ IF - M S $\quad 210.00$							
$\begin{array}{lll}\text { COLORTROPE } \\ \begin{array}{l}\text { HRM SOFTWR } \\ \text { Use computer screen to explore principles of light and color }\end{array} & \text { AP,IB,JR TU . . . S . } 79.95\end{array}$							
DISCOVERY: EXPERIENCES W/SCI MOLIKENREASONA tool for developing scientific problem solving							
FREQUENCY METER VERNIER AP IF Interface package to measure, display, and store audio frequencics - S 39.95							
$\begin{array}{lccccccc}\text { GRAPHICAL ANALYSIS III } & \text { VERNIER } & \text { AP } & \text { GG,IF,PS } & - & - & \text { S } & \text { T } \\ \text { Plots graphs of experimental data and allows students to analyze results }\end{array}$							

Titie	Publisher	Computers	Modes	P EM	S	Price
LIGHT IAB	CREATIVE TEC	AP,CO	IF	- M	S	50.00
Interfacing package to measure light intensity						
SCIENCE TOOL KIT 1 : SPEEDIMCTION	RRODERBUND	AP	IF	- EM	S	39.95
Use with SCIENCE TOOL KIT master module to measure velocity and acceleration						
SCIENCE TOOL KIT MASTER MODUZE	BRODERBUND	AP	IF.SI,TU	- E M	S	79.95
Interfacing puckage to measure temperature, light, speed, and response time; includes teacher's guide						
TEMPERATURE EXPERIMENTS	HARTIEY	AP.CO	IF	P EM	S	69.95
Interfacing package to measure temperature with two probes						
VOYAGE MIMI: WHALES \& ENVIRONMENT	HOLT R\&W	AP	IF	- EM	-	374.25

Probe kit for measuring temperature, light, and sound; includes BANK STREET LAB

SOCIAL SCIENCE - ECONOMICS

Title	Publisher	Computers	Mudes	P EM	S	Price
ELECTRONIC MONEY	MECC	AP.CO,	DP,SI,TU	- E M	-	36.00
Practice in recognizing specific uses of electronic money transactions in business						
FACTORY, THE	SUNBURST	AP,AT, CO,IB,TC	EG,PS,SI	- E M	S	55.00
Practice visual discrmina:ion, spatial perception, sequencing, and ordering skills						
GEOWORLD TOM SNYDER APSimulates mining operations for selected minerals in various locations around the glohe SI						
MARKET PLACE, THEEconomic simulations include selling apples, plants, lemonade, and bicycles \quad EG,SI \quad E M M - $\quad 39.00$						

SOCIAL SCIENCE - GEOGRAPHY

Title	Publisher	Computers	Modes	PEM	S	Price
BANK STREET SCHOOL FILER: NORTH AM.	SUNBURST	AP.CO	DB	- - M	S	99.00
Database files on social studies topics for North American countries						
BANK STREET SCHOOL FILER: U.S.	SUNBURST	AP,CO	DB	- . M	S	59.00
Database files on social studies topics for each state of the U.S.A.						
CROSSCOUNTRY CALIFORNIA	DIDATECH	AP	F.G,PS.SI	E M	S	49.95
Simulated travel from city to city throughout Califomia						
CROSSCOUNTRY CANADA	DIDATECH	AP	EG,PS,SI	- E M	S	49.95
Simulated travel across Car a; utilizes	erence materi					

Title	Publisher	Computers	Modes	P EM	S		Price
CROSSCOUNTRY TEXAS	DIDATECH	AP	EG,PS,SI	- E M	S		49.95
Simulated iravel from city to city throughout Texas A M .							
GEOWORLD TOM SNYDERSimulates mining operations for selected minerals in various locations around the globe							
ONE WORLD: COUNTRIES ACTIVE LEARNDATABASEInformation on all nations of the world; includes maps and activity sheets							
SEE THE U.SA. COMPU-TEACHIntroduces the political geography of the U.S.A. AP.IB							
STATES AND CAPITALS GAMCOGuided drill in basic gec ;raphy skills of the U.S.A.							
UNLOCKING THEMAP CODE \quad RAND MCNLYSix units to review land and water forms and to interpret map symbols EG,TU \quad E M - $\quad 111.00$							
WHERE IN EUROPE IS CARMEN BRODERBUND AP,IB EG,FS,SI \quad E M S $\quad 54.95$SANDIEGO?Use the CONCISE ATLAS OF EUROPE to search Europe and capture the criminal							
WHERE IN USA IS CARMEN BRODERBUND APSANDIEGO?Use FODOR'S GUDE TO THE USA to search the USA and capture the criminal							
WHERE IN WORLD IS CARMEN BRODERBUND AP EG PSSI - EM SSANDIEGO?Use THE WORLD ALMANAC to search the world and capture the criminal							

SOCIAL SCIENCE - GOVERNMENT/POLITICAL SCIENCE

Title	Publisher	Computers	Modes	P EM	S	Price
AND IF RE-ELECTED	FOCLIS	AF,IB	SI	- . M	S	65.00
Role-playing simulation involving goverment decision-making						
BALANCE OF POWER	MINDSCAPE	AM. ${ }^{\text {P.MC }}$	SI	- . M	S	59.95
Learn world politics by role-playing world powers SI S						
DATAQUEST: THE PRESIDENTS	MECC	AP	DB	\cdots	S	55.00
Database of facts about the American presidents						
DECISIONS, DECISIONS: BUDGET PROCESS	TOM SNYDER	AP.IB	PS,SI	- . M	S	119.95
Simulates the issues and pressures of the federal budgeting process						

SOCIAL SCIENCE - HISTORY

SOCIAL SCIENCE - SOCIOLOGY

VOCATIONAL EDUCATION/INDUSTRIAL ARTS

Title	Publisher	Computers	Modes	PEMS T	Price
GLIDEPATH	HRMSOFIWR	AP	SI	- M S -	49.95

Simulate flight of student-designed glider over imaginary terrain that includes mountains, forests, and deserts
TOY SHOP
Graphics package that prinis plans for 3-D toys; can be edited AP,CO,IB,MC \quad CA,GG \quad - M S T 49.95

WORLD LANGUAGES - FRENCH

Title	Publisher	Computers	Modes	P EM	S T	Price
EN VACANCES	DCHEATH	AP	DP,SI	- M	S	108.00
Introduces the language and customs of traveling in the French-speaking world						
ENVILLE	DCHEATH	AP	DP.SI	-	S	108.00
Practice giving and following directions in French						
GUIDE DE L'ENSEIGNANT	MECC	AP	DP.SH,TE	P E M	S T	49.00
Create and edit multiple choice. T-F, or short-answer exercises in any subject area						
LES SPORTS	「~HEATH	AP	DP,SI	-	S	108.00
A tour of French sports and entertainne.ct						
M-SS-NG L-NKS: LE MOT JUSTE	SUNBURST	IB,JR	EG,FS,SH	- E M	S T	69.00
Complete a passage that appears on the screen with letters omitted						
PARIS EN METRO	DCHEATH	${ }_{\text {AP }}$	DP.SI	-	S	108.00
Introduces students to the Paris Metro						
PROFESSION: DETECTIVE	GESSLER	AP.CO	EG	P EM	-	39.95
Explore the French language by solving this SNOOPER TROOPS mystery						
ticket to Paris	BLUELION	AP.CD,IB	SI	- - M	S	49.95
A simulated immersion into Parisian life						
UN REPAS FRANCAIS	DCHEATH	AP	DP,SI	-	S	108.00
A simulation of a typical Fiench meal						

WORLD LANGUAGES - GERMAN

Title	Publisher	Computers	Modes	PEMST	Price
M-SS-NG L-NKS: WORTSPIEL	SUNBURST	IB,JR	EG,PS,SH	- E M S T	69.00
Complete a passage that appears on the screen wiLu «etters omitted					

WORLD LANGUAGES - SPANISH

ANAGRAMAS HISPANOAMERICANOS GESSLER AP DP.EG - EM S - 3995

Geograpiuc review; proper spelling in Spanish of capitals and countries of Latin America
EJERCICIOS DE MATEMATICAS MECC AP DP,EG,PS P E - - 39.00

Title	Publisher	Computers	Modes	PEMS		Price
EL ASISTENTE DEL INSTRUCTOR	MECC	AP	DP.SH.TE	- E M S	T	49.00
Create and edit multiple choice. T-F, or short-answer exercises in any subject area						
$\begin{array}{lll}\text { ELMUNDO HISPANICO } & \text { DCHEATH } \\ \text { Introduces various hispanic countries, their capi:als, and inhabitants }\end{array} \quad$ AP DP.SI \quad M S $\quad 132.00$						
JUEGOS COMUNICATNOS RANDOMProvides a form of integrased communicative practice in Spanish \quad AP DP,EG $\quad-\mathrm{M} \mathrm{S}-59.95$						
SPANISH FREDWR/TER EDL ACTVFull-featured Spanish version of FREDWRITER; requires Spanish Wiz-Chip AP WP P EM S - 40.00						
$\begin{array}{llll}\text { TICKET TO SPAIN } & \text { BLUELION } \\ \text { A simulated immersion into Spanish life } & \text { AP,CO,IB } & \text { SI } & \text { M S } 49.95\end{array}$						
UN DIA EN MADRIDL.troduces the culture and language of Madrid \quad AP \quad DP.SI - M S - 120.00						
UN DIA TIPICO DCHEATH AP DP,SI M S -132.00						
$\begin{array}{llll}\text { UN VIAJE EN TREN } & \text { DCHEATH } \\ \text { A simulation of a train trip through a Spanish-speaking country } & \text { AP } & \text { DP,SI } & -M \mathrm{~S} \cdot \\ 132.00\end{array}$						
UNA FIESTA DCHEATH AP UP,SI M S 120.00						
$\begin{array}{llll}\text { UNA VISITA A MEXICJ DC HEATH } & \text { AP } & \text { DP.SI } & \text { M } \mathrm{S}-132.00 \\ \text { An exploration of Mexican culture and language }\end{array}$						

WORLD LANGUAGES - LANGUAGE TOOL

Title Publisher Computers Modes PEMST Price
see also INSTRUCTIONAL TOOLS - INSTRUCTIONAL MATERIALS GENERATCR section

ALPHABETICAL LIST OF TITLES

Title
Publisher

49ERS,THE
816/PAINT
A-PLUS: THE HOMEWORK SOLUTION
ACE REPORTER
ADDITION LOGICIAN
ADDITION MAGICIAN
ADOBE ILLUSTRATOR
ADVENTURE CONSTRUCTION SET
ADVENTURES WITH FRACTIONS
AGENTS OF INFECTION
AI: EXPERIENCE ARTIFICIAL INTELLIGENCE
ALCOHOL THE PARTY'
ALEXANDER
ALGE-BLASTER!
ALGEBRA GRAF(X)
ALGEBRA GRAF(X)
ALGEBRA SHOP, THE
ALGEBRAIC PROPOSER
ALICE IN WONDERLAND
ALL SORTS OF MEGGLES
ALL SORTS OF MEGGLES
ALPHABET CIRCUS
ALPHABET EXPRESS
ALPHABETIC KEYBOARDING
ALPHABETIC KEYBOARDING
ANAGRAMAS HISPANOAMERICANOS
AND IF RE-ELECTED . . .
ANIMAL PHOTO FUN
ANIMATE
ANT FARM
ANT FARM
APPLE LOGO II
APPLEWORKS
APPLEWORKS
APPLEWGRKS
ARBPLOT
ARCHAEOLOGY SEARCH
ARITHMETIC CRITTERS
ARNOLD
ARROW DYNAMICS
ATARILAB STARTER SET
ATARILAB STARTER SET
AUTHOR! AUTHOR!
AUTOMATED ACCOUNTING
AWARD MAKER PLUS
BAKE AND TASTE
BALANCE OF POWER
BANK STREET FILER
BANK STREET MUSICWRITER
BANK STREET MUSICWRITER
BANK STREET SCHOOL F'LER
BANK STREET SCHOOL FILER:
ENDANGERED

HARTLEY	SS	HI
BAUDVILLE	AT	
SAVTEK CORP	IT	SA
MINDPLAY	LA	
MECC	MA	NU
TLC	MA	NU
ADOBE	AT	
ELECTR ART	LA	
MECC	MA	NU
PRENTICE	SC	BL
SCHOLASTIC	PS	
MARSHWARE	HL	
GESSLER	WL	LT
DAVIDSON	MA	AL
ACTIVE LEARN	MA	AD
ACTIVE LEARN	MA	AL
SCHOLASTIC	MA	AL
TRUE BASIC	MA	AL
HRM SOFTWR	LA	
ED TECH	CS	
ED TECH	PS	
DLM	PR	
GAMCO	PR	
SW PUB	BE	TY
SW PUB	KB	
GESSLER	WL	SP
FOCUS	SS	GO
DLM	SC	GS
BRODERBUND	AT	
SUNBURST	PS	
SUNBURST	SC	GS
APPLE	CS	
CLARIS	IT	DB
CLARIS	IT	SD
CLARIS	IT	WP
CONDUIT	T	IM
MCGRAW HILL	SS	HI
MECC	MA	NU
TEMPORAL	MU	
SUNBURST	PS	
ATARI	SC	ES
ATARI	SC	SM
MINDPLAY	LA	
SW PUB	BE	AC
BAUDVILLE	IT	GG
MINDPLAY	MA	GM
MINDSCAPE	SS	GO
BRODERBUND	IT	DB
MINDSCAPE	IT	IM
MINDSCAPE	MU	
SUNBURST	IT	DB
SUNBURST	SC	BL

ALPHAEETICAL LIST OF TITLES

Title	Publishar	Subjects	Topics
BANK STREET SCHOOL FILER: ENDANGERED	SUNBURST	SC	EE
BANK STREET SCHOOL FILER: NORTH AM.	SUNBURST	SS	
BANK STREET SCHOOL FILER: SPACE	SUNBURST	SC	AY
BANK STREET SCHOOL FILER: U.S.	SUNBURST	SS	GE
BANK STREET STORYBOOK	MINDSCAPE	IT	WP
BANK STREET WRITER III	SCHOLASTIC	IT	WP
BANK STREET WRITER III	SCHOLASTIC	LA	
BANK STREET WRITER PLUS	gRODERBUND	IT	WP
BASIC MATH FACTS	HOUGHTON	MA	NU
BASICS OF BASIC	FOCUS	CS	
BE A WRITER!	SUNBURST	LA	
BIOFEEDBACK MICROLAB	HRM SOFTWR	SC	BL
BIRDBREED	EDUTECH	SC	BL
BLAZING PADDLES	BAUDVILIE	AT	
BLAZING PADDIES	BAUDVILLE	IT	GG
BODY ELECTRIC	HRM SOFTWR	HL	
BODY ELECTRIC	HRM SOFTWR	SC	BL
BODY ELECTRIC	HRM SOFTWR	SC	SM
BODY TRANSPARENT	BRITANNICA	SC	BL
BOOK WORM	MECC	I.M	
BOTANICAL GARDENS	SUNBURST	SC	BL
BOX SOLVES STORY PROBLEMS	SVE	MiA	NU
BUILDING PERSPECTIVE	SUNBURST	MA	GM
BUILDING PERSPECTIVE BUMBLE GAMES	SUNBURST	PS	
BUMBLE GAMES	TLC	MA	GM
BUMBLE PLOT	TLC	PS	
BUMBLE PLOT	ILC	MA	GM
CACTUSPLOT: A MATHEMATICS UTILITY	CACTUSPLOT	MA	AL
CALCULUS	BRODERBUND	MA	$\stackrel{A}{\text { A }}$
Calendar crafter	MECC	IT	GG
CALLIOPE	INNOVISION	IT	WP
CALLIOPE	INNOVISION	PS	
CARDIOVASCULAR FITNESS LAB	HRM SOFTWR	SC	BL
CARDIOVASCULAR FITNESS LAB	HRM SOFTWR	SC	SM
CATGEN	CONDUTT	${ }_{3 C}$	BL
CELL FUNCTIONS: GROWTH AND MITOSIS	IBM	SC	BL
CERTIFICATE MAKER	SPRINGBOARD	AT	
CHALLENSE MATH	SPKINGBOARD	IT	IM
CHANGING EARTH, THE	SUNBURST	MA	NU
CHARIOTS, COUGARS, AND KINGS	DC HEATH	SC	ES
CHARIOTS, COUGARS, AND KINGS	HARTLEY	LA	
CHEM LAB SIMULATIONS 1	HIGH TECH	SC	CH
CHEMICALS OF LIFE I: STRUCTURE	HIGH TECH	SC	CH
CIRCUIT LAB	MARK DAVIDS	SC	CH
CIRCULATION AND DIGESTION	MILLIKEN	SC	PH
CIRCUS MATH	MECC	MA	BL
CLASSIFICATION OF LIVING TH:NGS	ED' ACTV	MA	${ }_{\text {NL }}$
CLASSIFYING ANIMALS WITH BACKBONES	DC HEATH	SC	${ }^{\text {BL }}$
CLIP ART COLLECTION V. 1	SPRINGBOARD	IT	${ }_{\text {GL }}$
CLIP ART COLLECTION V. 1	SPRINGBOARD	IT	GG
CLIP ART COLLECTION V. 2	SPRINGBOARD	IT	GG

ALPHABETICAL LIST OF TITLES

Title

CLIP ART COLLECTION V. 2
CLOCK
CLOCK WORKS
CODE QUEST
COLOR ME: COMPUTER COLORING KIT COLOR ME: COMPUTER COLORING KIT COLORTRUPE
COMBINING THE ELEMENTS
COMBINING THE ELEMENTS
COMMODORE LOGO
COMPARISON KITCHEN
COMPARISON KITCHEN
COMPARISON KITCHEIV
COMPUTER CROSSROADS
COMPUTER PREPARATICN FOR THE SAT CONCEPTOR
CONVCERTWARE+
CONQUERING WHOLE NUMBERS
COUNTERS
COUNTING CRITTERS
COUNTING CRITTERS
CREATE WITH GARFIELD
CREATE WITH GARFIELD
CREATE WITH GARFIELD
CREATE-A-BASE
CREATE-A-BASE
CREATIVITY UNLIMITED
CREATIVITY UNLIMITED
CREATIVITY UNLIMITED
CRICKET DRAW
CRICKET DRAW
CRICKET DRAW
CRICKET GRAPH
CFICKET GRAPH
CIIOSSCOUNTRY CALIFORNIA
CROSSCOUNTRY CANADA
CROSSCOUNTRY CANADA
CR̃OSSCOUNTRY TEXAS
CPOSSCOUNTRY USA
CROSSCOUNTRY USA
CROSSCOUNTRY USA
CROSSWORD MAGIC
CROSSWORD MAGIC
CSL MARKS
CUBE BUILDER
CUBE BUILDER
DASHER
DATAQUEST: COMPOSER
DATAQJEST: COMPOSER
DATAQUEST: SAMPLER
DATAQUEST: THE FIFTY STATES
DATAQUEST: THE PRESIDENTS
DAZZLE DRAW
DBASE

Publisher	Subjects	Topics
SPRINGBOARD	IT	IM
HARTLEY	MA	GM
MECC	MA	GM
SUNBURST	PS	
MINDSCAPE	AT	
MINDSCAPE	IT	GG
HRM SOFTWR	SC	SM
DC HEATH	SC	CH
DC HEATH	SC	GS
COMMODORE	CS	
DLM	LA	
DLM	PR	
DLM	PS	
EDL ACTV	LA	
HBJ	TE	
MENTOR LRN	PS	
GREAT WAVE	MU	
MECC	MA	NU
SUNBURST	PR	
MECC	MA	NU
MECC	PR	
DLM	AT	
DLM	IT	GG
DLM	LA	
MECC	CS	
MECC	IT	DB
SUNBURST	AT	
SUNBURST	MA	GM
SUNBURST	PS	
CRICKET SW	AT	
CRICKET SW	IT	GG
CRICKET SW	IT	IM
CRICKET SW	IT	GG
CRICKET SW	IT	IM
DIDATECH	SS	GE
DIDATECH	PS	
DIDATECH	SS	GE
DIDATECH	SS	GE
DIDATECH	P3	
DIDATECH	SS	GE
DIDATECH	SS	HI
MINDSCAPE	IT	IM
MINDSCAPE	LA	
CHANCERY SOF	IT	CM
HRM SOFTWR	MA	GM
HRM SOFTWR	PS	
CONDUTT	WL	Lr
MECC	CS	
MECC	IT	DB
MECC	CS	
MECC	SS	GE
MECC	SS	GO
BRODERBUND	AT	
ASHTON TATE	IT	DB

ALPHABETICAL LIST OF TITLES

Title
DECIMAL DISCOVERY
DECISIONS, DECISIONS SERIES
DECISIONS, DECISIONS: BUDGET PROCESS
DECISIONS. DECISIONS: COLONIZATION
DECISIONS, DECISIONS: FOREIGN POLICY
DECISIONS, DECISIONS: IMMIGRATION
DECISIONS. DECISIONS: REVOLUT. WAR DECISIONS, DECISIONS: TELEVISION
DECISIONS, DECISIONS: URBANIZATION
DELTA DRAWING
DELTA DRAWING
DINOSAUR DAYS
DINOSAUR DIG
DINOSAUR DIG
DINOSAURS
DINOSAURS AND SQUIDS
DINOSAURS AND SQUIDS
DISCOVERY LAB
DISCOVERY LAB
DISCOVERY LAB
DISCOVERY: EXPERIENCES W/SCI REASON
DISCOVERY: EXPERIENCES WISCI REASON
DISCOVERY: EXPERIENCES WISCI REASON
DISCRIMINATION ATTRIBUTES AND RULES
DISNEY DESIGN STUDIO
DOREMI
DRAW-IT
EARLY ADDITION
EARLY GAMES FOR YOUNG CHILDREN
EARLY GAMES MATCHMAKER
EARTHQUAKES
EASY GRAPH
EASY GRAPH II
EDUCALC
EDUCALC
EDUCALC
EDUCALC TEMPLATES
EDUCALC TEMPLATES
eJERCICIOS DE MATEMATICAS
EL ASISTENTE DEL INSTRUCTOR
EL MUNDO HISPANICO
ELECTRIC POET
ELECTRIC POET
ELECTRIC WRITING
ELECTRONIC MAILBAG
ELECTRONIC MONEY
ELECTRONIC MONEY
ELECTRONIC VILLAGE
ELLEN NELSON MATH 1
en vacances
EN VILLE
ENCHANTED FOREST, THE
ENCHANTED FOREST, THE
EIGGLISH ACHIEVEMENT I-V

Publisher	Subjecis	Topics
DLM	MA	NU
TOM SNYDER	PS	
TOM SNYDER	SS	GO
TOM SNYDER	SS	HI
TOM SNYDER	SS	GO
TOM SNYDER	SS	HI
TOM SNYDER	SS	HI
TOM SNYDER	SS	SO
TOM SNYDER	SS	SO
SPINNAKER	AT	
SPINNAKER	IT	GG
TYC	SC	BL
MINDSCAPE	SC	BL
MINDSCAPE	SC	GS
ADV ID	PR	
SCOTT FORS	MA	ST
SCOTT FORS	PS	
MECC	PS	
MECC	SC	GS
MECC	SC	SM
MILLIKEN	PS	
MILLIKEN	SC	GS
MILIIKEN	SC	SM
SUNBURST	PS	
SUNBURST	AT	
TEMPORAL	MU	
PAPERBACK	AT	
MECC	MA	NU
SPRINGBOARD	PR	
SPRINGBOARD	PR	
IBM	SC	ES
GROLIER	IT	GG
GROLIER	MA	ST
GROLIER	IT	SD
GROLIER	MA	AL
GROLIER	MA	NU
GROLIER	MA	AL
GROLIER	MA	NU
MECC	WL	SP
MECC	WL	SP
DC HEATH	WL	SP
IBM	AT	
IBM	IT	AU
CREATIVE PUB	LA	
EXSYM	IT	TC
MECC	BE	Ev
MECC	SS	EC
EXSYM	IT	TC
DECISION	MA	NU
DC HEATH	WL	FR
DC HEATH	WL	FR
SUNBURST	MA	GM
SUNBURST	PS	
MINDSCAPE	LA	

ALPHABETICAL LIST OF TITLES

Title	Publisher	Subjects	Topics
ENVIRONMENT I: HABITATS/ECOSYSTEMS	IBM	SC	EE
ENZYME INVESTIGATIONS	HRM SOFTWR	SC	CH
EQUATIONS I	MINDSCAPE	MA	AL
EQUATIONS II	MINDSCAPE	MA	AL
ERNIE'S MAGIC SHAPES	MINDSCAPE	PR	
EXCEL	MICROSOFT	IT	SD
EXPERIMENTS IN CHEMISTRY	HRM SOFTWR	SC	CH
EXPERIMENTS IN COLORIMETRY	HRM SOFTWR	SC	CH
EXPERIMENTS IN HUMAN PHYSIOLOGY	HRM SOFTWR	SC	BL
EXPERIMENTS IN SCIENCE	HRM SOFTWR	SC	BL
EXPERIMENTS IN SCIENCE	HRM SOFTWR	SC	CH
EXPERIMENTS IN SCIENCE	HRM SOFTWR	SC	ES
EXPERIMENTS IN SCIENCE	HRM SOFTWR	SC	PH
EXPLORE-A-SCIENCE: TYRANNOSAURUS	DC HEATH	SC	BL
EXPLORE-A-STORY SERIFS	DC HEATH	LA	
EXPLORER METROS	SUNBURST	MA	GM
EXPLORING TABLES AND GRAPHS I	OPTIMUM RES	MA	AL
EXPLORING TABLES AND GRAPHS I	OPTIMUM RES	MA	ST
EXPLORING TABLES AND GRAPHS II	OPTIMUM RES	MA	AL
EXPLORING TABLES and GraphS II	OPTIMUM RES	MA	ST
EXPRESSION WRITER	HRM SOFTWR	MA	AL
EXPRESSION WRITER	HRM SOFTWR	MA	NU
EXPRESSIONIST	ALLEN BONADI	MA	1 n
EXPRESSIONIST	ALLEN BONADI	MA	AL
EZ LOGO	MECC	CS	
EZ LOGO	MEC	PS	
FACEMAKER	SPINNAKER	AT	
FACTORING ALGEERAIC EXPRESSIONS	MINDSCAPE	MA	AL
FACTORY, THE	SUNBURST	MA	GM
FACTORY, THE	SUNBURST	PS	
FACTORY, THE	SUNBURST	SS	EC
FANTAVISION	BRODERBUND	AT	
FANTAVISION	BRODERBUND	IT	GG
FAST TRACK FRACTIONS	DLM	MA	NU
FAY'S WORD RALLY	DIDATECH	LA	
FILEMAKER	NASHOBA	[T	DB
FIRST CHOICE	MEIZNER	[T	WP
FIRST DRAFT	SCHOLASTIC	IT	WP
FIRST DRAFT	SCHOLASTIC	LA	
FIRST R	Mmliken	PR	
FIRST-LETTER FUN	MECC	LA	
FIRST-LETTER FUN	MECC	PR	
FISH SCALES	DLM	MA	GM
FISH SCALES	DLM	PR	
FLYING CARPET, THE	LRNG TECH	PS	
FOR YOUR NEXT ADVENTURE	SUNBURST	CS	
FORECAST	MINDSC.APE	SC	ES
FRACTION CONCEPTS, INC.	MECC	MA	NU
FRACTION MUNCHERS	MECC	MA	NU
FRACTION PRACTICE UNLIMITED	MECC	MA	NU
FraCtions: addition and subtraction	HOUGHTON	MA	NU
FRACTIONS: BASIC SKILLS	HOUGHTON	MA	NU
FREDWRITER	SOFTSWAP	IT	WP
FREDWRITER	SOFTSWAP	L. 4	

ALPHABETICAL LIST OF TITLES

Title	Publisher	Subjects	Topics
FREQUENCY METER	VERNIER	SC	SM
FRIENDLY COMPUTER, THE	MECC	CS	
FRIENDLY FILER	GROLIER	CS	
FRIENDLY FILER	GROLIER	IT	DB
FULLPAINT	ASHTON TATE	AT	
FUN FROM A TO Z	MECC	LA	
FUN FROM A TO Z	MECC	PR	
FUN HOUSE MAZE	SUNBUR.ST	PS	
GAME SHOW, THE	ADVID	PS	
GAMEFRAME: ONE AND TWO	HOUGHTON	MA	NU
GEARS	SUNBURST	MA	NU
GEARS	SUNBURST	PS	
GENETICS	MECC	SC	BL
GEOMETRIC PRESUPPOSER	SUNBURST	MA	GM
GEOMETRIC SUPPOSER: CIRCLES	SUNBURST	MA	GM
GEOMETRIC SUPPOSER: QUADRILATERALS	SUNBURST	MA	GM
GEOMETRIC SUPPOSER: TRIANGLES	SUNBURST	MA	GM
GEOMETRY	BRODERBUND	MA	GM
GEOMETRY ALIVE!	EDL ACTV	MA	GM
GEOWORLD	TOM SNYDER	PS	
GEOWORLD	TOM SNYDER	SS	EC
GERTRUDE'S PUZZLES	TOM SNYDER	SS	GE
GERTRUDE'S PUZZLES	TLC	PS	
GERTRUDE'S SECRETS	TLC	PR	
GERTRUDE'S SECRETS	TLC	PS	
GETTING READY TO READ AND ADD	SUNBURST	LA	
GETTING READY TO READ AND ADD	SUNBURST	PR	
GHOST WRITER	MECC	IT	WP
GHOST WRITER	MECC	LA	
GLIDEPATH	HRM SOFTWR	SC	PH
GLIDEPATH	HRM SOFTWR	VE	Pr
GNEE OR NOT GNEE	SUNBURST	PS	
GOLDEN SPIKE, THE	NATIONAL GEO	SS	Hi
GPLE: GLOBAL PROGRAM LINE EDITOR	BEAGLE BRO	CS	
GRAMMAR GREMLINS	DAVIDSON	LA	
GRAPHICAL ANALYSIS III	VERNIER	MA	AD
GRAPHICAL ANALYSIS III	VERNIER	SC	SM
GRAPHICS EXPANDER V. 1	SPRINGBOARD	AT	
GRAPHICWORKS	MINDSCAPE	AT	
GRAPHICWORKS	MINDSCAPE	IT	GG
GRAPHING EQUATIONS	CONDUT	MA	AL
GREEN GLOBS AND GRAPHING EQUATIONS	SUNBURST	MA	AL
GROUND WATER GUIDE DE L'ENSEIGNANT	IBM	SC	ES
GUIDE DE L'ENSEIGNANT	mECC	WL	FR
GUTENBERG	GESSLER	WL	LT
HARMONIOUS DICTATOR HEALTH AWARENESS GAMES	TEMPORAL	MU	
HEALTH AWARENESS GAMES	HRM SOFTWR	HL	
HEART ABNORMALITIES AND EKGs HEART ABNORMALTIES AND EKGs	FOCUS	HL	
HEART ABNORMALITIES AND EKGs HEAT AND TEMPERATURE	FOCUS	SC	EL
HEAT AND TEMPERATURE	HRM SOFTWR	SC	GS
HEAT AND TEMPERATURE HEAT ENERGY	HRM SOFTWR	SC	SM
HEAT ENERGY HEATH SCIENCE EXPLORING HEAT	DC HEATH	sc.	ES
HEATH SCIENCE: EXPLORING HEAT	DC HEATH	SC	GS

ALPHABETICAL LIST OF TITLES

Title

HEATH SCIENCE: EXPLORING MATTER
HIDE 'N SEQUENCE
HIGh VIRE LOGIC
HINKY PINKY GAME
HOMETOWN: LOCAL AREA STUDY
HOMETOWN: LOCAL AREA STUDY
HOMETOWN: LOCAL AREA STUDY
HOMEWORKER
HOT DOG STAND
HOT DOG STAND
HOW CAN I FIND IT?
HOW THE WEST WAS ONE + THREE x FOUR
HOW TO BUILD A BETTER MOUSETRA'A
HUMAN GENETIC DISORDERS
HYDROLOGIC CYCLE
HYPERCARD
HYPERCARD
HYPERCARD
I CAN WRTTE!
IBM LOGO
IGGY'S GNEES
II WRITE
IMMIGRANT
INCREDIBLE LABORATORY, THE
INCREDIBLE LABORATORY, THE
INFORMATION CONNECTION
INFORMATION CONNECTION
INFORMATION LAB SOFTWAREIEARTH SC
INTEGRATED ACCOUNTING
INTERPRETING GRAPHS
INTRO TO GENERAL CHEMISTRY
INVESTIGATING ACCELERATION
INVESTIGATING ELECTRIC FIELDS
INVESTIGATING GRAVITATIONAL FORCE
JACK AND THE BEANSTALK
JAM SESSION
JAZZ DICTATOR
JENNY'S JOURNEYS
JEI`NY'S JOURNEYS
JUEGOS COMUNICATIVOS
JUGGLES' RAINBOW
KAREL THE ROBOT
KEYBOAR! CADET
KEYBOARDING MASTER
KEYBOARDING PRIMER
KINDERCOMP
KING'S RULE, THE
KING'S RULE, THE
KING'S RULE, THE
KOALAPAINTER
KOALAPAINTER
KRELL LOGO
LEARNING ABOUT NUMBERS
LEARNING THRCUGH LOGO

Publisher	Subjects	Topics
DC HEATH	SC	GS
SUNBURST	PS	
SUNBURST	PS	
MINDSCAPE	LA	
ACTIVE LEARN	CS	
ACTIVE LEARN	PS	
ACTIVE LEARN	SS	HI
DAVIDSON	IT	SA
Sivburst	PS	
SUNBURST	SS	EC
SUNBURST	LM	
SUNBURST	MA	NU
TMrsumit	SC	SM
HRM SOFTWR	SC	BL
IBM	SC	ES
APPLE	IT	AU
APPLE	IT	DB
APPLE	IT	GG
SUNBURST	LA	
IBN،	CS	
SUNBURST	PS	
RANDOM	IT	WP
ETC	SS	HI
SUNBURST	PS	
SUNBURST	SC	SM
GROLIER	IT	TC
GROLIER	LM.	
ADD WES	SC	ES
BEDFORD SOFT	EE	AC
SUNBURST	MA	AL
COMPRESS	SC	CH
IBM	SC	PH
IBM	SC	PH
IBM	SC	PH
HRM SOFTW	LA	
BRODERBUND	MU	
TEMPORAL	MU	
MECC	PS	
MECC	S S	HI
RANDOM	WL	SP
TLC	PR	
WILEY	CS	
MINDSCAPE	KB	
MECC	KB	
MECC	KB	
SPINNAKER	PR	
SUNBURST	MA	AL
SUNBURST	MA	NU
SUNBURST	PS	
PTI-KOALA	AT	
PTI-KOALA	IT	GG
KRELL	CS	
C \& C SOFT	PR	
SUNBURST	CS	

ALPHABETICAL LIST OF TITEES

Title

Publisher	Subjects	Topics
SUNBURST	HL	
LEGO	PS	
DC HEATH	WL	FR
C \& C SOFT	LA	
C \& C SOFT	PR	
MINDSCAPE	PR	
DC HEATH	SC	ES
DC HEATH	SC	GS
SCHOLASTIC	SC	BL
CREATIVE TEC	SC	PH
CREATIVE TEC	SC	SM
IBM	SC	BL
EDL ACTV	SS	HI
IBM	LA	
SChOLASTIC	PS	
TERRAPIN	CS	
LCSI	CS	
LCSI	LA	
LCSI	PS	
LOTUS	IT	DB
LOTUS	IT	SD
LOTUS	IT	WP
SUNBURST	LA	
SUNBURST	LA	
SUNBURST	WL	FR
SUNBURST	LA	
SUNBURST	WL	GR
SUNBURST	LA	
CHALLENGER	AT	
SIMON \& SCHU	IT	GG
A.L.P.S.	IT	WP
CLARIS	AT	
DC HEATH	SC	GS
CLARIS	AT	
CLARIS	IT	GG
CLARIS	IT	TC
PTI-KOALA	AT	
CLARIS	IT	WP
EDUSOFT	MU	
SUNBURST	IT	WP
SUNBURST	LA	
MECC	BE	EN
MECC	MA	NU
MECC	SS	EC
MECC	LA	
MECC	MA	NU
MINDSCAPE	TE	
MINDSCAPE	KB	
MINDSCAPE	IT	DB
HOUGHTON	MA	Nu
IBM	MA	NU
TLC	MA	NU
MILLIKEN	MA	AL
MILLIKEN	MA	Nu

ALPHABETICAL LIST OF TITLES

Title	Publisher	Subjects	Topics
MATH SHOP，THE	SCHOLASTIC	MA	NU
MATH WORD PROBLEMS	OPTIMUM RES	MA	NU
MATH WORLDS：SAMPLING	DC HEATH	MA	ST
Math Worlds：STRaTEGIES I AND II	DC HEATH	MA	NU
MATH：SOLVING STORY PROBLEMS LV．3－8	HOUGHTON	MA	NU
MATHGRAPHER	HRM SOFTWR	MA	AL
MATHTYPE	DESIGN SCI	MA	AD
MECC GRAPH	MECC	IT	GG
MECC GRAPH	MECC	MA	ST
MECC GRAPHING PRIMER	MECC	IT	G3
MECC GRAPHING PRIMER	MECC	MA	ST
MECC SPELLER	MECC	IT	SK
MECC WRITE START	MECC	LA	
MECC WRITER	MECC	IT	WP
MELODIOUS DICTATOR	TEMPORAL	MU	
MEMORY CASTLE	SUNBURST	PS	
MEMORY：A FIRST STEP	SUNBURST	PS	
MENDELIAN GENETICS	IBM	SC	BL
METEOR MISSION	DLM	MA	NU
METEOR MULTIPLICATION	DLM	MA	NU
MICRO GARDENER	EDL ACTV	SC	BL
MICRO GARDENER	EDI ACTV	SC	ES
MICROSOFT MU－MATH	Mlikuこご．	MA	AD
MICROSOFT MU－MATH	MICROSOFT	MA	AL
MICROSOFT WORD	MICROSOFT	IT	WP
MICROSOFT WORKS	MICROSOFT	IT	DB
MICROSOFT WORKS	MICROSOFT	IT	SD
MICROSOFT WORKS	MICROSOFT	IT	TC
MICROSOFT WORKS	MICROSOFT	［T	WP
MICROTYPE：WONDERFUL WORLD OF PAWS	SW PUB	KB	
MICROZINE SUBSCRIPTION	SCHOLASTIC	EP	
MILLIKEN WORD PROCESSOR	MLlLIKEN	IT	WP
MIND PUZZLES	MECC	PS	
MINDSTRETCHER SERIES	ISL SOFTWR	PS	
MIRRORS ON THE MIND－STATISTICS	ADD WES	MA	ST
MIRRORS ON THE MiND－STRATEGIES	ADD WES	MA	ST
MOLEC：MOLECULAR MODELING	COMPRESS	SC	CH
MONEY AND TIME ADVENTURES LOLLIPOP	SVE	MA	GM
MONEY AND TIME ADVENTURES LOLLIPOP	SVE	MA	NU
MONEY WORKS	MECC	MA	NU
MONEY！MONEY！	HARTLEY	MA	NJ
MOPTOWN HOTEL	TLC	PR	
MOPTOWN HOTEL	TLC	PS	
MOPTOWN PARALE	TLC	PR	
MOPTOWN PARADE	TLC	PS	
MORE	LIV TEXT	IT	WP
MOTION	HRM SOFTWR	SC	PH
MOUSE PAINT	CLARIS	IT	GG
MOVING MOLECULES	HRM SOFTWR	SC	CH
MOVING MOLECULES	HRM SOFTWR	SC	PH
MR．PIXEL＇S CARTOON KIT	MINDSCAPE	AT	
MR．PIXEL＇S PROGRamming paint Set	MINDSCAPE	AT	
MULTIPLICATION PUZZLES	MECC	MA	NU

ALPHABETICAL LIST OF TITLES

Title	Publisher	Subjects	Topics
MULTISCRIBE	SCHOLASTIC	IT	WP
MULTISCRIBE GS	SCHOLASTIC	IT	WP
MUPPET SLATE	SUNBURST	PR	
MUPPET WORD BOOK THE	SUNBURST	PR	
MUPPET WORD BOOK. THE	SUNBURST	LA	
MUPPETS ON STAGE	SUNBURST	PK	
MUPPETVILLE	SUNB'RST	LA	
MUPPETVILLE	SUNEUKST	PR	
MUSIC CONSTRUCTION SET	ELECTR ART	MU	
MUSIC DETECTIVE. THE	TEMPORAL	MU	
MUSIC FUNDAMENTALS I	SILVER	MU	
MUSIC SHOP	BRODERBUND	MU	
MUSIC STUDIO	MEDIAGENIC	MU	
MUSIC THEORY	MECC	MU	
MUSICWORKS	SPINNAKER	MU	
NEWBERY ADVENTURE: CHARLOTTE'S WEB	SUNBURST	LA	
NEWBERY ADVENTURE: WRINKLE IN TIME	SUNBURST	LA	
NEWSQUEST	TIME	EP	
NEWSROOM	SCHOLASTIC	AT	
NEWSROOM	SPRINGBOARD	IT	IM
NEWSROOM CLIP ART V. 1	SCHOLASTIC	AT	
NEWSROOM PRO	SPRINGBOARD	IT	IM
NEWSWORKS	NEWSWEEK	SS	GO
NOW HEAR THIS	MARSHWARE	HL	
NOW HEAR THIS	MARSHWARE	¢ C	BL
NUMBER FARM	DLM	MA	NU
NUMBER FARM NUMBER MUNCHERS	DLM	PR	
NUMBER MUNCHERS NUMBER SEA HUNT	MECC	MA	NU
ODELL LAKE	GAMCO	MA	NU
ODELL LAKE	MECC	SC	GS
OH. DEER!	MECC	PS	
OH, DEER!	MECC	SC	EE
ONE WORLD: COUNTRIES DATA BASE	ACTIVE LEARN	SS	GE
OPTICS ON COMPUTER: PhYSICAL SCIENCE	FOCLIS	SC	PH
OREGON TRAIL, THE	MECC	PS	
OREGON TRAIL, THE	MECC	SS	HI
OTHER SIDE, THE	TOM SNYDER	PS	H
OTHER SIDE, THE	TOM SNYDER	SS	EC
OTHER SIDE, THE	TOM SNYDER	SS	GO
OUR TOWN MEETING	TOM SNYDER	SS	GO
PAGEMAKER	ALDUS	AT	
PAGEMAKER	ALDUS	IT	IM
PAINT WITH WORDS	MECC	LA	
PAINT WITH WORDS	MECC	PR	
PAINTWORKS PLUS	MEDIAGENIC	AT	
PAINTWORKS PLUS	MEDIAGENIC	IT	GG
PARIS EN METRO	DC HEATH	WL	FR
PATHFINDER	SUNBURST	MA	SM
PATHOLOGY: DISEASES AND DEFENSES PATTERNMAKER	IBM	SC	BL
PATTERNMAKER	MINLSCAPE	AT	
PCERIODIC TABLE: COMPUTER ASSISTED	[BM	IT	IM
PERPLEXING PUT COMP	COMPRESS	5 C	CH
perplexing puzkes	HARTLEY	LA	

ALPHABETICAL LIST OF TITLES

Title	Publisher	Subjects	Topics
PFS: GRAPH	SCHOLASTIC	IT	GG
PFS: WRITE	SCHOLASTIC	IT	WP
PHONICS PRIME TIME: BLENDS AND DIGRA.	MECC	LA	
PHONICS PRIME TIME: FINAL CONSONANTS	MECC	LA	
PHONICS PRIME TIME: INITIAL CONSONANTS	MECC	LA	
PHONICS PRIME TIME: VOWELS I	MECC	LA	
PHONICS PRIME TIME: VOWELS II	MECC	LA	
PHYSICAL SCIENCE DATA BASE	SCHOLASTIC	SC	CH
PHYSICAL SCIENCE DATA BASE	SCHOLASTIC	SC	GS
PIC-BUILDER	OPTIMUM RES	AT	
PICTURE PERFECT	MINDPLAY	AT	
PIECE OF CAKE MATH	SPRINGBGARD	MA	NU
PINBALL CONSTRUCTION SET	ELECTR ART	PS	
PlaNE VIEW	SUNBURST	MA	GM
PLANETARY CONSTRUCTION SET	SUNBURST	PS	
planetary construction SET	SUNBURST	SC	AY
PLAYWRITER'S THEATER	ED TECH	LA	
PLAYWRITER: SERIES	GROLIER	LA	
POETRY EXPRESS	MINDSCAPE	LA	
POLYWRITER	PASSPORT	MU	
POND, THE	SUNBURST	MA	NU
POND, THE	SUNBURST	PS	
POWER POINT	MICROSOFT	IT	IM
PRACTICAL THEORY	ALFRED MUSIC	MU	
PRIMARY WORDMAİ!	MILLIKEN	MA	NU
PRINCIPAL'S ASSISTANT	MINDSCAPE	IT	GG
PRINT MAGIC	EPYX	IT	GG
PRINT SHOP	BRODERBUND	AT	
PRINT SHOP	BRODERBUND	IT	GG
PRINT SHOP COMPANION	BRODERBUND	AT	
PRINT SHOP GRAPHICS IIGS LIBRARY	BRODERBUND	IT	GG
PRINT SHOP GRAPHICS LIBRARY	BRODERBUND	AT	
PRINT SHOP GRAPHICS LIBRARY 3	BRODERBUND	AT	
PROBLEM SOLVING COMPUTER CW LV.5-8	MCGRAW HILL	MA	NU
PROBLEM SOLVING COMPUTER CW LV.K-4	MCGRA W HILL	MA	NU
PROBLEM-SOLVING STRATEGIES	MECC	PS	
PROFESSION: DETECIIVE	GESSLER	WL	FR
PROFESSIONAL SIGN MAKER	SUNBURST	IT	GG
ProFessional Sign maker	SUNBURST	IT	IM
PROJECT 200	NATIONAL GEO	MA	ST
PROJECT 200	NATIONAL GEO	SC	GS
PSYCH LAB	HRM SOFTWR	SC	GS
PUZZLE MASTER	SHENANDOAH	IT	IM
PUZZLE TANKS	SUNBURST	MA	NU
PUZZLE TANKS	SUNBURST	PS	
- ${ }^{\text {U }}$ UZZLER	SUNBURST	LA	
PUZZLES AND POSTERS	MECC	IT	IM
QUATIONS	SCHOLASTIC	MA	AL
QUATIONS	SCHOLASTIC	PS	
QUICKFLASH	MECC	IT	IM
QUOTIENT QUEST	MECC	MA	NU
READER RABBIT	TLC.	LA	
READING FĆ? INFORMATION LV. II-IV	IBM	LA	

ALPHABETICAL LIST OF TITLES

Title

READING FOR MEANING LV. I-IV
READING WORKSHOP, THE
READY, SET, GO
RED RYDER
REGROUPING
RIGHT TURN, THE
RIPPLE THAT CHANGED
AMERICÁN HISTORY
ROBOT ODYSSEY
ROCKY'S BOOTS
ROYAL RULES
ROYAL RULES
ROYAL PULES
SAFARI SEARCH
SAILING THROUGH STORY PROBLEMS
SALINA MATH GAMES
SCHOLASTIC'S PFS: FILE AND REPORT
SCHOLASTIC'S PFS: FILE AND REPORT
SCIENCE \#1: THE ENVIRONMENT
SCIENCE TOOL KIT I : SPEEDIMOTION
SCIENCE TOOL KIT 1: SPEEDIMOTION
SCIENCE TOOL KIT 1: SPEEDIMOTION
SCIENCE TOOL KIT 2: EARTHQUAKE
SCIENCE TOOL KIT MASTER MODULE
SCIENCE TOOL KIT MASTER MODULE
SCIENCE TOOI KIT MASTER MODULE
SEE THE U.S.A.
SEMCALC
SEMCALC
SEMCALC
SEMCALC
SENSIBLE GRAMMAR
SHAPE AND COLOR RODEO
SHOW TIME
SIMPLE MACHINES
SIMPLE MACHINES
SIR WILLIIAM WRONG-NOTE
SKY LAB
SKY TRAVEL
SMARTCOM II
SMELL \& TELL
SMOKING DECISION
SOCMATE
SOLAR FCOD: EXPLAN. PHOTOSYNTHESIS
SONGWRITER
SOUND IDEAS SERIES
SOUND TRACKS
SOUND TRACKS
SOUND • A MICROCOMPUTER-BASED LAB
SOUTH DAKOTA
SPACE SUBTRACTION
SPANISH FREDWRITER
SPECTRUM: PATTERNS AND PROGRAMS SPEEDWAY MiATH

Publisher
IBM
MINDSCAPE

LETRASET USA
FREESOFT
SUNBURST
SUNBURST
TOM SNYDER

TLC TLC

SUNBURST
SUNBURST
SUNBURST
SUNBURST
DLM
EDL ACTV
SCHOLASTIC
SCHOLASTIC
DECISION
BRODERBUND
BRODERBUND
BRODERBUND
BRODERBUND
BRODERBUND
BRODERBUND
BRODERBUND
COMPU-TEACH
SUNBURST
SUNBURST
SUNBURST
SUNBURST
SENSIBLE
DLM MIECC
MICRO P\&L
MICRO P\&L
TEMPORAL
MECC
COMMODORE
HAYES
MARSHWARE SUNBURST
AGS
HRM SOFTWR
MINDSCAPE
HOUGHTON
MECC
MECC
HRM SOFTWR ED'L ACTV MECC
ED'L ACTV
SUNBURST
MECC

Subjects Topics
LA
LA
IT
IT \quad TC
PS
MA
GM
SS
PS
PS
MA AL
MA
NU
PS
PS
MA NU
MA NU
CS
IT \quad DB

SC EE
$\begin{array}{ll}\text { SC } & \text { GS } \\ \text { SC } & \text { PH } \\ \text { SC } & S M\end{array}$

SC	SM
SC	ES
SC	GS

SC	PH
SC	SM

SS	GE
MA	$A D$

MA NU
PS
IT WP
PR
LA
SC GS
$\mathrm{SC} \quad \mathrm{PH}$

MU
SC

SC	AY
IT	TC

SC
HL
LA
SC BL
MU
LA
MU
PS
SC PH
MA NU
MA NU
WL
SP
CS
MA NU

Title	Publisher	Subjects	Topics
SPINNERS AND SLUGS	SCOTT FORS	MA	ST
STATES AND CAPITALS	GAMCO	SS	GE
STICKYBFAR ABL	OPTIMUM RES	LA	
STICKYBEAR ABC	OPTIMUM RES	PR	
STICKYBEAR DRAWING	OPTIMUM RES	AT	
STICKYBEAR MATH I	OPTIMUM RES	MA	NU
STICKYBEAR MATH 2	OPTIMUM RES	MA	NU
STICKYBEAR NUMBERS	OPTIMUM RES	PR	
STICKYBEAR OPPOSITES	OPTIMUM RES	PR	
STICKYBEAR OPPOSITES	OPTIMUM RES	PS	
STICKYBEAR SHAPES	OPTIMUM RES	PR	
STICKYBEAR SHAPES	OPTIMUM RES	PS	
STICKYBEAR TOWN BUILDER	OPTIMUM RES	PS	
STICKYBEAR TOWN BUILDER	OPTIMUM RES	SS	So
STICKYBEAR TYPING	OPTIMUM RES	KB	
STICMYDEAR WORD FROBLEMS	OPTIMUM RES	NA	NU
STORY TREE	SCHOLASTIC	PS	
STUDENT STORIES	MECC	LA	
STUFF AND FETCH	MECC	CS	
SLこCESS WITH TYPING	SCHOLASTIC	KB	
SUPER FACTORY, THE	SUNBURST	MA	GM
SUPER FACTORY, THE	SUNBURST	PS	
SUPER SCOOP II	COMPRESS	LA	
SUPERPAINT	SLIICON BEAC	AT	
SUPERPAINT	SILICON BEAC	IT	GG
SUPERPLOT	EDUSOFT	MA	AD
SUPERPLOT	EDUSOFT	MA	AL
SUPERPRINT	SCHOLASTIC	AT	
SUPERPRINT	SCHOLASTIC	IT	GG
SURVEY TAKER	SCHOLASTIC	CS	
SURVEY TAKER	SCHOLASTIC	IT	DB
SURVEY TAKER	SCHOLASTIC	SS	SO
SURVIVAL MATH	SUNBURST	MA	NU
SWEET SHOPPE	DC HEATH	MA	NU
TAKE I: ANIMATION GRAPHICS	BAUDVLLE	AT	
TAKE I: ANIMATION GRAPHICS	BAUDVILLE	IT	GG
TALKING TEXT WRITER	SCHOLASTIC	LA	
TEASERS BY TOBBS	SUNBURST	MA	NU
TEASERS BY TOEBS	SUNBURST	S	
TECMATH-DIFFERENTIATION	TECHED	MA	AD
TECMATH--INTEGRATION	TECHED	MA	AD
TEDDY'S PLAYGROUND	SUNBURST	MA	GM
TEDDY'S PLAYGROUND	SUNBUKST	PR	
TEDDY'S PLAYGROUND	SUNBURST	PS	
TELLING TIME	GAMCO	MA	GM
TEMPERATURE EXPERIMENTS	HARTLEY	SC	PH
TEMPERATURE EXPERIMENTS	hartley	SC	SM
TEN CLUES	SUNBURST	PS	
TERRAPIN LOGO	TERRAPIN	CS	
THINK QUICK	TLC	PS	
THOSE AMAZING READING MACl"NES I-V	MECC	LA	
TIC TAC SHOW	ADVID	PS	
TICKET TO PARIS	BLUE LION	WL	FR
TICKET TO SPAIN	BLUELION	WL	SP

ALPHABETICAL LIST OF TITLES

Title	Publisher	Subjects	Topics
TIME EXPLORERS	GAMCO	MA	GM
TIME TUNNEL	FOCUS	SS	HI
TIMELINER	TOM SNYDER	IT	IM
TIMELINER	TOM SNYDER	SS	HI
TIP N FLJP	SUNBURST	PS	
TO PRESERVE, PROTECT, AND DEFEND	MECC	SS	GO
TOBBS LEARNS ALGEBRA	SUNBURS ${ }^{\text {a }}$	MA	AL
TONEY LISTENS TO MUSIC	TEMPORAL	MU	
TONK IN THE LAND OF BUDDY-BOTS	MINDSCAPE	PS	
TOP DRAW	STYEEWARE	AT	
TCP DRAW	STYLEWARE	IT	GG
TOUCHY SUBJECT	MARSHWARE	SC	BL
TOY SHOP	BRODERBUND	AT	
TOY SHOP	BRODERBUND	VE	
TRADING POST	SUNBURST	PS	
TRIGONOMETRY OF THE RIGHT TRIANGLE	MINDSCAPE	MA	AD
TRIVIA MACHINE	MECC	CS	
TRIVIA MACHINE	MECC	LM	
TRIVIA MACHINE	MECC	PS	
TURBO PASCAL	BORLAND	CS	
TUREO PASCAL MAC	BORLAND	CS	
TURTLE TRACKS	SCHOLASTIC	CS	
TURTLE TRACKS	SCHOLASTIC	IT	GG
TYPE TO LEARN	SUNBURST	KB	
TYPE!	BRODERBUND	KB	
TYPING TUTOR IV	SIMON \& SCHU	BE	TY
TYPING TUTOR IV	SIMON \& SCHU	KB	
UN DIA EN MADRID	DC HEATH	WL.	SP
UN DIA TIPICO	DC HEATH	WL	SP
UN REPAS FRANCAIS	DC HEATH	WL	FR
UN VIAJE EN TREN	DC HEATH	WL	SP
UNA FIESTA	DC HEATH	WL	SP
UNA VISITA A MEXICO	DC HEATH	WL	SP
UNDERSTANDING CHARTS AND GRAPHS	SVE	MA	ST
UNDERSTANDING WORD PROBLEMS	SVE	MA	NU
UNLOCKING THE MAP CODE	RAND MCNLY	SS	GE
US CONSTITUTION THEN AND NOW	SCHOLASTIC	SS	GO
US GOVERNMENT DATA BASE US HISTORY DATA BASE	SCHOLASTIC	SS	GO
US HISTORY DATA BASE	SCHOLASTIC	SS	HI
USA PROFILE USING A CALENDAR	ACTIVE LEARN	SS	GE
USING A CALENDAR VIDEOWORKS II	HARTLEY	MA	GM
VIDEOWORKS II	BRODERBUND	AT	
VIDEOWORKS II VOLCANOES	BRODERBUND	IT	GG
VOLCANOES VOLCANOES	EARTHWARE	SC	ES
VOLCANOES VOYAGE MIMI: ECOSYSTEMS	IBM	SC	ES
VOYAGE MIMI: ECOSYSTEMS	HOLTR\&W	MA	NU
VOYAGE MIMI: ECOSYSTEMS VOYAGE MIMI: INTRO TO COMPUTING	HOLTR\&W	SC	EE
VOYAGE MIMI: INTRO TO COMPUTING VƠ̇AGE MIMI:	HOLT R\&W	CS	
VOrage mimi I ISLAND SURVIVORS	HOLT R\&W	SC	EE
VOYAGE MIMI: ISLAND SURVIVORS VOYAGE MIMI: MAPS AND NAVIGATION	HOLT R\&W	SC	GS
VOYAGE MIMI: MAPS AND NAVIGATION	HOLT R\&W	MA	GM
VOYAGE MIMI: MAPS AND NAVIGATION	HOLT R\&W	SC	ES
VOYAGE MIMI: MAPS AND NAVIGATION	HOLT R\&'W	SC	GS
VOYAGE MIMI: WHALES AND	HOLT R\&W	SC	SM

ALPHABETICAL LIST OF TITLES

Title

ENVIRONMENT
WALLY'S WORD WORKS
WALT DISNEY COMIC STRIP MAKER WALT DISNEY COMIC STRIP MAKER WEATHER AND CLIMATE LAB
WHAT'S MY LOGIC
WHATSIT CORPORATION
WHATSIT CORPORATION
WHATSIT CGRPORATION
WHERE IN EUROPE IS CARMEN SANDIEGO?
WHERE IN USA IS CARMEN SANDIEGU?
WHERE IN USA IS CARMEN SANDIEGO?
WHERE IN WORLD IS CARMEN SANDIEGO?
WHERE 'N WORLD IS CARMEN SANDIEGO^ WHERE IN WORLD IS CARMEN SANDIEGO? WHO AM I?
WHOLE NUMBERS: ADD. AND
SUBTRACTION
WHOLE NUMBERS: MULT. AND DIVISION
WINNIE THE POOH IN IOO ACRE WOOD
WORD HERD: LOOK LIKES
WORD HERD: SOUND ALIKES
WORD MUNCHERS
WORD PERFECT
WORD WIZARDS
WORD-A-MATION
WORDMATH 1-2
WORDS AT WOnK: CONTRACTION ACTION
WORKSHEET WIZARD I-III
WRITE ON! SERIES
WRITER RABBIT
WRITER'S HELPER II
WRITING A CHARACTER SKETCH
WRITING A NARRATIVE
WRITING AN OPINION PAPER
WRITING WORKSHOP, THE
WRITING WORKSHOP, THE
YOU ARE WHAT YOU EAT
ZOYON PATROL

Publisher

SUNBURST	LA	
SUNBURST	IT	GG
SUNBURST	LA	
SCHOLASTIC	SC	ES
MIDWESTPC	PS	
SUNBURST	BE	EN
SUNBURST	MA	NU
SUNBURST	PS	
BRODERBUND	SS	GE
BRODERBUND	PS	
BRODERBUND	SS	GE
BRODERBUND	LM	
BRODERBUND	PS	
BRODERBUND	SS	GE
FOCUS	SC	GS

HOUGHTON MA NU
HOUGHTON MA NU

SUNBURST LA
MECC
MECC
MECC
WORD PERFECT
MECC
SUNBURST
MILLIKEN
MECC
EDUSOFT
HUMANITIES
TLC
CONDUIT
MECC
MECC
MECC
MIILLIKEN
MILLIKEN
MARSHWARE
MECC

Subjects Topics

LA
LA
SC ES
PS
MA NU
PS

PS
SS
PS

SC GS

LA
LA
LA
LA IT WP
LA LA
MA NU
LA
MA NU

LA LA
LA
LA
LA
LA
IT
LA
HL
PS

PUBLISHERS' ADDRESSES

Active Learning Systems 5365 Avenida Encinas, Suite J
Carlsbad, CA 92008 (619) 931-7784

Addison-Wesley Publishing Co. 2725 Sand Hill Road Menlo Park, CA 94025 (415) 854-0300

Adobe Systems, Inc.
P.O. Box 7900

Mt. View, CA 94039-7900
(415) 962-2100

Advanced Ideas, Inc.
2902 San Pablo Avenue
Berkeley, CA 94702
(415) 526-9100

Aldus
411 1st Avenue South, Suite 200
Seattle, WA 98104
(206) 622-5500

Alfred Publishing Co., Inc.
P.O. Box 10003

Van Nuys, CA 91410-0003 (818) 891-5099
allen bonadio associates
814 Castro Street
San Francisco, CA 94114
(415) 282-5864

American Guidance Service, Inc.
Publisher's Building
Circle Pines, MN 55014
(612) 786-4343

Apple Computer, Inc.
Contact Authorized Apple Dealer
(408) 973-3850

Ashton-Tate
20101 Hamilton Ave.
Torrance, CA 90502-1319
(213) 538-7725

Atari Corp.
1196 Borregas Avenue
Sunnyvale, CA 94088-3427
(408) 745-2030

Automated Lang. Processing Sys. 295 Chipeta Way
Salt Lake City, UT 84108
(801) 584-3000

Baudville, Inc.
5380 52nd Street, S.E.
Grand Rapids, MI 49508
(616) 698-0888

Beagle Brothers, Inc.
6215 Ferris Square, Suite 100
Sar. Diego, CA 92121
(619) 452-5500

Bedford Software Corp.
15311 Northeast 90th
Redmond, WA 98052
(206) 883-0074

Blue Lion Software
90 Sherman Street
Cambridge, MA 02140
(617) 876-2500

Borland International 1700 Green Hills Road
Scotts Valley, CA 95066
(408) 438-8400

Britannica Software
345 4th Street
San Francisco, CA 94107
(415) 546-1866

Broderbund software
17 Paul Drive
San Rafael, CA 94903
(415) 492-3200

C \& C Software
5713 Kentford Circle
Wichita, KS 67220
(316) 683-6056

PUBLISHERS' ADDRESSES

Cactusplot Company
4712 E . Osborn
Phoenix, AZ 85018
(602) 945-1667

Challenger Software Corp.
18350 Kedzie Avenue Homewood IL 60430 (312) 957-3475

Chancery Software, Ltd.
200-1120 Hamilton Street
Vancouver, B.C. V6B 2S2 Canada (604) 685-2041

Claris Corp.
440 Clyde Avenue
Mt. View, CA 94043
(800) 334-3535

Commodore Computer Systems Div. 1200 Wilson Drive
West Chester, PA 19380
(215) 431-9100

COMPress
P.O. Box 102

Wentworth, NHi 03282
(800) 221-0419

Compu-Teach
78 Olive Street
New Haven, CT 06511
(800) 448-3224

CONDUIT-University of Iowa
Oakdale Campus
Iowa City, IA 52242
(319) 335-41m

Creative Publications, Inc.
788 Palomar A- - enue
Sunnyvale CA 94086
(408) 720-1400

Creative Technolog', Inc.
Box 1009
Carlisle, PA 17013
(717) 245-2988

Cricket Software
40 Valley Siream Parkway
Malvern, PA 19355
(215) 251-9890
D.C. Heath \& Co.

2700 N. Richardt Avenue
Indianapolis, IN 46219
(617) 862-2570

Davici=on \& Associates, Inc.
3135 Kashiwa Street
Torrance, CA 90505
(213) 534-4070

Decision Development Corp.
2680 Bishop Drive, Suite 122
San Ramon, CA 94583
(415) 830-8896

Design Science
6475-B E. Pacific Coast Highway, Suite 392
Long Beach, CA 90803
(213) 433-0685

Didatech Software
3812 William Street
Burnaby, B.C. V5C 3H9 Canada
(604) 299-4435

DLM
One DLM Park
Allen, TX 75002
(214) 248-6300

Earthware Computer Service
P.O. Box 30039

Eugene, OR 97403
(503) 344-3383

Educational Activities, Inc.
P.O. Box 392

Freeport, NY 11520
(516) 223-4666

Educational Tecunology
6150 North 16th Street
Phoenix, AZ 85016
(800) 422-4339

PUBLISHERS' ADDRESSES

Educational Technology Center Harvard Graduate School of Education 337 Gutman Library/Appian Way Cambridge, MA 02138 (617) 495-9372

EduSoft

P.O. Box 2560

Berkeley, CA 94702
(800) 548-2304

EduTech
1927 Culver Road
Rochesier, NY 14609
(716) 482-3151

Electronic Arts 1820 Gateway Drive
San Mateo, CA 94404
(415) 571-7171

Epyx, Inc.
Contact local dealer
Exsym
7016 Delwood Road, N.E.
Albuquerque, NM 87110
(505) 88:-3670

Focus Media
839 Stewart Avenue
Garden City, NY . 530
(516) 794-8900

Freesoft Co.
150 Hickory Drive
Beaver Falls, PA 15010
(412) 846-2700

Gamco Industries
P.O. Box 1911

Big Spring, TX 79721
(915) 267-6327

Gessler Educational Software
900 Broadway
New York, NY 10003
(212) 573-3113

Great Wave Software
5353 Scotts Valley Drive
Scotts Valley, CA 95066
(408) 438-1990

Grolier Electronic Publishing, Inc.
95 Madison Avenue
New York, NY 10016
(212) 696-9750

Harcourt Brace Jovanovich
3800 Lakeville Highway
Petaluma, CA 94952
(707) 763-1000

Hartley Courseware, Inc.
123 Bridge Street
Dimondale, MI 48821
(517) 646-6458

Hayes Microcomputer Products, Inc.
Contact local dealer (404) 441-1617

High Technology Software Products
P.O. Box 60406

Oklahoma City, OK 73146
(405) 848-0480

Holt, Kinehart and Winston
839 Mitten Road
Burlingame, CA 94010
(415) 692-6380

Houghton Mifflin Co.
2225 E. Randal Mill Road, Suite . $j 30$
Arlington, TX 76011
(817) 649-5254

HRM Software/ A Division of Queue, Inc.
562 Boston Avenue
Bridgeport, CT 06610
(800) 232-2224

Humanities Software
P.O. Box 1604

Hood River, OR 97031
(509) 493-1395

PUBLISHERS' ADDRESSES

IBM Educational Systems
P.O. Box 2150

Atlanta, GA 30055
(404) 988-2532

Innovision
P.O. Box 1317

Los Altos, CA 94023-1317
(415) 964-2885

Island Software
Box 300, Dept. K
Lake Grove, NY 11755
(516) 585-3755

John Wiley \& Sons, Inc.
1 Wiley Drive
Somerset, NJ 08875
(201) 469-4400

Krell Software Corp.
Flowerfield Building \#7, Suite 1D
St. Jai .es, NY 11780
(516) 584-7900

Learning Company, The
6493 Kaiser Drive
Fremont, CA 94555
(415) 792-2101

Learning Technologies, Inc.
4255 LBJ Freeway, Suite 131
Dallas, TX 75244
(214) 991-4958

Lego Systems, Inc.
555 Taylor Road
Enfield, CT 06082
(203) 749-2291

Letraset USA
40 Eisenhower Drive
Paramus, NJ 07653
(201) 845-6100

Logo Computer Systems, Inc.
1000 Roche Boulevard
Vaudreuil, P.Q. J7V 6B3 Canada 1 (800) 321-5646

Lotus Development Corp.
55 Cambridge Parkway
Cambridge, MA 02142
(617) 494-9114

Mark Davids
21825 O'Connor Street
St. Clair Shores, MI 48080
(313) 774-9709

Marshware
P.O. Box 8082

Shawnee Mission, KS 66028
(816) 523-1059

McGraw-Hill Book Co./School Division 8171 Redwood Highway
Novato, CA 94947
(415) 898-5585

MECC
3490 Lexington Avenue North
St. Paul, MN 55112-8097
(612) 481-3550

Mediagenic
P.O. Box 7286

Mt. View, CA 94039
(415) 960-0410

Meizner Bussin Machines, Inc.
4771 Boston Post Road
Pelham, NY 10803
(212) 671-7400

Mentor Learning Systems, Inc.
1825 De La Cruz Boulevard
Santa Clara, CA 95050
(408) 988-4114

Micro Power \& I ight Co.
12820 Hillcrest Road \#219
Dallas, TX 75230
(214) 239-6620

Microsoft Corp.
16011 NE 36th Way, Box 97017
Redmond, WA 98073
(800) 227-4679

PUBLISHERS' ADDRESSES

Midwest Publications, Inc.
P.O. Box 448, Dept. 5

Pacific Grove, CA 93950
(408) 375-2455

Milliken Publishing Co.
P.O. Box 21579

St. Louis, MO 63132-0579
(314) 991-4220

Mindplay, Inc.
100 Conifer Hill Drive, Building 3A
Danvers, MA 01923
(800) 221-7911

Mindscape, Inc.
3444 Dundee Röaú
Northbrook, IL 60062
(312) 480-7667

Nashoba Systems, Inc.
1157 Triton Drive, Suite A
Foster City, CA 94404
(415) 578-1770

National Geographic Society
17th And M Streets
Washington, DC 20036
(202) 857-7378

Newsweek, Inc.
444 Madison Avenue
New York, NY 10022
(212) 350-4974

Optimum Rescurce, Inc.
10 Station Place
Norfolk, CT 06058
(203) 542-5333

Paperback Software 2830 Ninth Street
Berkeley, CA 94710
(415) 644-2116

Passport Designs, Inc. 625 Miramontes Street
Half Moon Bay, CA 94019
(415) 726-0280

Prentice-Hall Allyn and Bacon
Sylvan Avenue
Englewood Cliffs, NJ 07631
(201) 592-2540

PTI-Koala
269 Mt. Hermon Road
Scotts Valley, CA 95066
(408) 438-0946

Rand McNally \& Co.
P.O. Box 7600

Chicago, IL 60680
(312) 673-9100

Random House School Division
201 East 50th Street
New York, NY 10022
(212) 572-2075

Saviek Corp.
P.O. Box 1077

Waltham, MA 02254
(617) 891-0638

Scholastic, Inc.
4460 Black Avenue, Suite J
Pleasanton, CA 94566
(415) 462-8250

Scott, Foresman and Co.
1900 East Lake Avenue
Glenview, IL 60025
(312) 729-3000

Sensible Software, Inc.
335 East Big Beaver, Suite 207
Troy, MI 48083
(313) 528-1950

Shenandoah Software
P.O. Box 776

Harrisonburg, VA 22801 (703) 433-9485

Silicon Beach Software, Inc.
P.O. Box 261430

San Diego, CA 92126
(619) 695-6956

PUBLISHERS' ADDRESSES

Silver Burdett \& Ginn 250 James Street
Morristown, NJ 07960-1918
(201) 285-8139

Simun \& Schuster Software
1 Gulf \& Westem Plaza
New York, NY 10023
(212) 373-8515

Society for Visual Education 1345 Diversey Parkway Chicago, IL 60614 (800) 621-1900

Softswap
P.O. Box 271704

Concord, CA 94527-1704
(415) 685-7265

South-Western Publishing Co. 5101 Madison Road
Cincinnati, OH 45227
(513) 271-8811

Spinnaker Software Corp.
1 Kendall Square
Cambridge, MA 02139
(800) 323-8088

Springboard Software, Inc. 7808 Creekridge Circle Minneapolis, MN 55435
(612) 944-3915

Styleware, Inc.
5250 Gulfton, Suite 2E
Houston, TX 77081
(713) 668-1360

Sunburst Communications
39 Washington Avenue
Pleasantville, NY 10570-9971
(914) 769-5030

SYMANTEC/Living Videctext Division
117 Easy Street
Mt. View, CA 94043
(415) 964-6300

Teach Yourself by Computer Software, Inc. 2128 W. Jeffirson Road
Pittsford, NY 14534
(716) 427-7065

Technical Educationai Consultants
76 North Broadway, Suite 2010
Hicksville, NY 11801
(516) 681-1773

Temporal Acuity Products, Inc.
300 120th Avenue, NE, Building 1, S200
Bellevue, WA 98005
(206) 462-1007

Terrapin, Inc.
376 Washington Street
Malden, MA 02148
(617) 322-4800

Time Education Center
10 N. Main Street, Suite 301
Yardley, PA 19067
(800) 523-8727

Tom Snyder Productions
90 Sherman Street
Cambridge, MA 02140
(617) 876-4433

True BASIC, Inc.
350 Theodore Fremd Avenue
Rye, NY 10580
(800) TR-BASIC

Vernier Software
2920 S.W. 89th
Portland, OR 97225
(503) 297-5317

Word Perfect Corporation
288 West Center Street
Orem, UT 84057
(313) 321-4566

Courseware Selection

by
Ann Lathrop
San Mateo County Office of Education

Reprinted from Computers in Composition Instruction,

an ICCE publication.
Educators have a crucial role to play in today's rapidly expanding field of instructional software. It is our responsibility to become skilled evaluators who look critically at courseware before we purchase it for use in our classrooms. We must demand excellence and reject that which is mediocre. We must be willing to write critical reviews in our professional journals. Finally, we must persuade those journals that have not yet added computer courseware to their reviews of instructional materials to do so.

The technology that can be used to set new standards of courseware excellence now exists. Creative designers and programmers are developing courseware that taps the interactive power of the computer and truly involves the student in the learning process. Merely placing workbook pages on the screen and asking occasional multiple-choice questions is no longer enough. We are well past the stage of being pleased simply because a program will load and run correctly. As we locate highly creative, interactive programs, we must publicize them to our associates for their own use and identify them for the larger educational community as a new standard for instructional computing.

Approximately 8,000 programs are currently being advertised for sale in the education market. Probably less than 10 percent of the programs fall into the category of good to excellent; some more conservative estimates place this figure at less than five percent. It is our challenge to select courseware to meet our students' needs from among the relatively few good programs now available.

THE EVALUATION PROCESS

Prior to beginning a critical review of courseware, it is helpful to select an evaluation instrument, guidelines or other standardized criteria. The Guidelines for Evaluating Computerized Instructional Materials, published by the National Council of Teachers of Mathematics, is one of the most carefully developed instruments. These guidelinee are easy to read and have relatively simple forms. The guide is not geared just for mathematics, so teachers in any subject area will find it useful. The MicroSIFT Evaluator's Guide for Micro-computer-Based Insiructional Packages is more complex, requiring careful study and a longer time to complete the forms. It is more appropriate for an in-depth analysis of a courseware package or for use by course ware developers or publishers. Each of these guides pre-
sents evaluation criteria and a thorough discussion of the evaluation process. A shorter evaluation form deveioped by The California Library Media Consortium for Classroom Evaluation of Microcompurer Courseware is designed as a training tool for teachers in identifying some of the important evaluative criteria.

The next step is to select and obtain courseware for review. The next aricle discusses where to find critical reviews that can be heipful in making initial selections. These critical reviews are not to be confused with the publishers' announcements that are often reprinted from advertisements without any evaluation of the actual product. Critical reviews are best used to select programs for on-site evaluation. They should be considered to be a buying guide only as a last resort; previewing the courseware with the students who will be using it should be part of the selection process whenever possible.

Many courseware publishers and distributors now have a free 30 -day on-approval policy, usually requiring an official purchase order. The primary advantage of ordering from such a source is that the courseware can be previewed in the classroom where student reactions will frequently modify an instructor's original opinion of the material. Courseware can also be previewed at conferences, software demonstra' ons, computer stores, district or regional centers, or at other sehools. Some sales representatives will bring courseware to a school or district for preview. One innovative approach is the "software fair" or preview day to which publishers, jobbers and educators from a large region are invited for the specific purpose of previewing a wide variety of courseware. All of these alternatives should be thoroughly explored before any courseware is ordered from a catalog description without che option of on-site preview before purchase.

After a courseware package has been obtained, there are three questions to be addressed before beginning a serious evaluation. In most cases a negative answer to any of the three may well eliminate the courseware from further consideration.

1. Does the program run on my equipment?
2. Does it meet a curriculum need at my school?
3. Does it represent a valid use of the computer?

These questions may appear too obvious to warrant discussion, but they are all too often ignored. Courseware is not transportable from one system to another and must match the exact configuration of equipment cualable at a specific site, including any required peripheral devices. Most courseware is selected to meet one or more stated curriculum objectives and should be evaluated in terms of those objectives. Even an outstanding program may be of little value if it does not fit into the curriculum. Finally, much of the courseware currently on the market appears to make only a trivial use of the computer. If the program meely replicates some tash that is already being done well with a textbook. workbook or other traditional medium, its purchase would seem to be a waste of courseware funds.

EVALUATING THE PROGRAM

Several teachers, studs's and other staff members should become involved in the evaluation. Courseware is often used in more than one classroom and at several grade levels. Different teachers will emphasize different criteria. It is especially helpful for each teacher to use the package individually, preferably in the classroom, and then to discuss it critically with other reviewers before making a p.richase decision. The evaluation steps outlined below are designed for one teacher, but they can te repeated by each person involved in the review.

1. Be yourself. Read the documentation, paying special attention to any stated or implied goals and objectives and to the instructions. When a management system is part of the courseware, try to assess how useful it might be and whether it will be easy to implement.
2. Be a "good" student. Go through the program in a positive manner. Fellow instructions and try to do well. Ask the following questions:

Can I follow the instructions and understand what I am supposed to do?
Am I bored by the program, or does it challenge me to perform well?
As a good student, have I learned anything or developed new concepts?
Was it fun? Would i want to run it again or use it with a friend?
3. Be a "bad" student. Make a great many errors. Get confused and try to return to the instructions for help. Miss the same problem/question several times in a row and see what happens. Then ask:

How do I feel about this program and about the computer?
How do I feel about myself? Did the program make me feel dumb or did it help me to feel successful?
Did the program help me when I made an error? Did it just say "try again" when I was already doing my best, or if I was guessing?
When I made an error, did the program branch to easier materials, present items more slowly, or explain the lesson in several different ways to help me?
Was there a beep or other noise that let the whele class know when I made ani error?
Did I learn anything?
Would I ever want to use this prr gram again?
4. Be a "negative" student. Press RETUR.V, ENTER unexpectedly. Ignore the instructions and press all of the wrong keys. Put in a number when the program asks for a letter. Be uncooperative. See how the program handles your antagonism:

Could I crash the program?

Did I get any insulting responses, or did I get only a patient prompt that suggested what I should de?
Was it fun to fail? Did I get a more interesting graphic reward-the person was hanged,. something exploded, the boat sank-when I gave the wrong ans wer?
Could I put a lot of crazy stuff on the screen or was the keyboard locked against unwanted responses?
Did I eventually get interested and become involved in the program almost in spite of myself?

These questions will help to identify trily creative and well-designed courseware. Many programs deal fairly weil with the good student unless they are, unfortunately, boring. It is in responding to student errors, intentional or otherwise, that a program designer ths the opportunity to show imagination and to u. he power of the computer to present material in new and more helpful ways.

Once you are familiar with the program, you will want to use it with your students, either individually.-in small groups, or with the entire class. Students can be asked to complete some type of evaluation form or can be informally polled in discussions following the use of the program. Their reactions will provide additional insight into the potential value of the program being conadered. Note especially whether most students complete the program without urging, want to repeat the program, or seem eager to share it with their friends. Then complete the evaluation form you have selected.

The final purchase/non-purchase decision should be based upon the opinions of the teachers involved, the reactions of students, and the relevance of the program to the curriculum. High standards must be established. and our fiaal decision should reflect our determination to select only the very best from among the many programs available.

New courseware is appearing almost daily, and its quality is steadily improving. Any purchase should be deferred until there is enthusi-stic agreement among the reviewers that is appropriate to the objectives of the school and truly represents an effective use of the computer. We control the marketplace by our decision to purchase or not to purchase a specific program and can encourage the development of creative and interactive programs by our refusal to purchase anything less.

Identifying Equitable Software

by
Raymond Rose

The state education departments in California and New York have begun to include screening for sexism, racism and other forms of bias in their review procedures of educational software. Currently there are over 20 states which have state law, regulation or policy requiring that instructional texts or materials be reviewed for equity. In Massachusetts, the state equity law. Chapter 622, requires that all instructional materials be reviewed for equity. This has been interpreted to include instructional software.
The forms of bias and 2 scrimnation have been categcrized by McCume and Matthews (Implementing Title IX and Attaining Sex Equity: A Workshop Package for Elementary-Secondary Educators, U.S. Department of H.E.W., 1978) as

1. Exclusion/Invisibility-the complete or relative exclusion of a particular group or groups in the Eintent and illustrations of the material.
2. Stereotyping-portrayal of racial-ethnic group members as well as males and females with regard to only one particular attribute, characteristic or ole.
3 Imbalance/Selectivity-the presentation of only one interpretation of an issue, situation or group of people, especially based orı stereotypes.
3. Unreality-the tendency to ignore facts which are unpleasant or which do not conform with the value system of the majority culture.
4. Fragmentation/Isolation-the separation of the study of minority grow s and women through the establishi..ent of separate units le.g. History of Black Americans, Careers for Women), which imply tha: : e groups are unrelated to the experienct of the dominant culture.
5. Linguistic Bias-the use of the generic "he" is an obvious source of bias. The use of exclusionary language and job titles le.g. postman, firemanl is a mor? subtle ard common form of linguistic bias.
The staff member thri is given the responsibility for the review of instructional software needs to receive specific training to understand the types of bias and discrimination which are possible. Most software review forms, if they address the issue of bias and discrimination, do so with only a single question, which for the untrained review er will not address the subtle issues which are the most pervasive in instructional materials.

Look at the human factors involved in the program and supplementary materials. Will the motivational strategies used in the pregram be motivators for all your students? Does the program use a shoot-them-up arcade game format that turns off some students? Does the program use visual images of people? If so, are both females and males represented? Are both sexes represented in the text? Are different racial and ethnic peoples in:el!uded in both the text and in the visual images? Instructional materials should, on the whole. present a variety of positive images of males and females, a variety of racial and ethnic groups as well as including dis. abled persons and a range of ages.

> "Instructional materials shourd, on the whole, present a variety of positive images of males and females, a variety of racial and ethnic groups, as well as including disabled persons and a range of ages."

If the software evaliation form you are now using addrr ises the issue of equity with just one general ques on. you might consider adding these items:

1.ar.puage free of ser bas
Ruce bas
Cultural bas:
Momen are proportionateh represented an cext
Minorite group member represented in text
Contributions of all racial and ethnic groups and women ond men presenced in realisuc and/or accurate. wavs
4 rar.ect of ages are
represented
Disabled persons are represented in a varietv of role- ENDM
/Raymond Rose. Program Spectalist, The .Veu England Center for Equity Assistance. located at The NETWORK. Inc.. 290 Soluth Main St...Andover. MA 01810./

Preview Center Criteria: A Survey Summary

by
Ann Lathrop and Vicki Smith

In the August/September issue of The Computing Teacher, the stage was set for a forum regarding software preveew centers. Educators and software publishers have had, for a number of year:, a dilemma regardiag the circulation of software for preview. Educators want and need to look at software prior to purchasing. But software publishers cannot possïly mail a program to every educator who wants to preview it.

Regional preview centers were set up several years ago in order to solve the problem. They would provide an opportunity for educators to preview software without spending money, and for software publishers to ristribute reasonable numbers of products for preview without worry of copyright infringement.

What has happened, in many cases, is that even though regional centers have been established, teachers continue to request preview copies of software. i cause the centers have varying procedures and guidelines as to how they are maintained, publishers have difficulty identifying those centers which are more appropriate than others for handling preview mate..als. They find it frustrating to forward a software package to a school or individual, knowing a preview center is near-by-or wondering if one is. These concerns are voiced whenever this topic is discussed.

Last December, such a discussion took place at a conference for software publishers. We were addressing the group on the needs of preview centers. (Vicki is past president of the Intemational Council for Computers in Education and soordinator for computer-based instruction at Region IV \& ucation Service Center :a Houston, Texas, where she cocrdinated a statewide software evaluation project for four years. Ann is bi sy coordinator at San Mateo, California, County Office of sducation, where she is in charge of the California TECC Software Clearinghouse and the Technology In the Curiculum [TIC] Update Project. They have worked together on the Educational Software Evaluation Consortium, which Ann annually organizes and chairs, producing The Educational Software Preview Guide, for which she serves as editor.) During the session, a publisher posed the question, "Is there some way you could help us in identifying or certifying preview centers?" It seemed like ans excellent idea, but one that would be difficult politically to pull off.

Brainstorming continued even after the session. How could we determine "the best" of the centers? What criteria would we use? How would we expect a preview center to be run? A commitment was made to an ongoing dialogue among software publishers and directors of statewide or oiher la'ge pre-
view centers. In June, a number of representatives from the two groups involved attended a follow-up meeting ai the Na tional Educational Computing Conference in San Diego. We discussed suggested criteria for identifying preview centers, development ar policies and procedures, and the role of schools in the process.

The Original Survey

We compiled and distri'uted a list of 24 suggested criteria for ranking. Each participant ranked the items below in order of importance.

1. Adoption of an official copyright policy to protect the publisher from unauthorized copying of software placed in the preview cenier
2. Willingness to sign letter of agreement/commitment or contract
3 Equal treatment given to all publishers
3. Geographic region served
4. Number of educators who have access to the preview center
5. Days and hours the preview center is open
6. Computers/peripherals available for use with software
7. Effective management of preview center ensuring that educators have accessibility to all materials
8. Software displayed effectively, with adequate shelving, appropriate packaging, attractive and well-maintained facility
9. Staff availabie to assist educators in using the software, especially with complex programs, managemeni systems, tools, etc.
11 Support/endorsement by state education agency/department
10. Evaluation forms, guidelines or other established criteria to assist educators in previewing the software
11. Space to display catalogs
12. Willingness to distribute catalogs
13. Space and staff available to host vendor sessions/demonstrations
14. Newsletters/flyers sent to educators to advertise new software packages
15. Accurate, current information on software available for preview is maintaned and disseminated to educators in print and/or online
16. Classes/workshops providing training in software evaiuation, integration of software into the curriculum, use of tool packages, etc.
17. Statistics on number and types of users available to the publisher
18. Copies of evaluations or other user feedback available to the publisher
19. Names and addresses of educators visiting the preview center made available to publisher (with consent of educator)
20. Will return software when requested to do so by publisher
21. Ẅ̈l" accept "demo disks" if they provide a good, interactive representation of the software package and include documentation
22. Policy regulating loan of software to schools/educators to protect publishers' rights
The respondents' data was broken into three groups: "More Important," "Important," and "Less Important." Six of the 24 items appeared in the top third, "Most Important," category at least 16 times. The next most popular appeared only 11 times. In order, the highest ranked were:

Item 1-adoption of copyright policy
Item 10-staff available for assistance
Item 5-number of educators having access
Item 8-effective management of the center
Item 24-policy regulating loan of software
Item 17-accurate, current information on available soft-
ware disseminated in print and/or online
The highest agreement among the publishers was on the items regarding the number of educators having access to the preview center. Four of the 17 respondents in the publishers category ranked this as number one, and more than half placed it in the top third, or "More Important" category. None of the preview center respondents ranked this item first, although sever: of the 10 ranked it as "More Importint."

Five of the 10 preview centers ranked the adoption of an official copyright policy (item 1) as their first consideration. Three of the 17 publishers also ranked this first. Nine preview centers and 10 publishers placed it in the "More Important" category. Only two publishcrs and none of the preview centers placed this item in the "Less Importunt" category.
Three publishers and one preview center selected effective management of the preview center (item 8) as their first consideration. Two-thirds of the publishers and over half of the preview centers placed it in the "More Important" category.
More than half of the publishers ranked four other items in the top third, none being ranked number one. These focus on the effective use of the preview center by educators. The highest agreement, with 12 publishers placing it in the top third, was the dissemination to educatois of accurate, current information about the software available for preview (item 17). Newsletters and flyers informing educators of new materials (item 16) also ranked in the publishers' top third,
with rune votes. Ten publishers placed competent preview center staffing (item 10) in the top third. Finally, copynght concern was addressed again, with nine publishers and seven preview centers ranking policy regulating loan of software (item 24) in the top third.
The item of least importance to publishers was the willingness of a preview center to return software upon request (item 22). Their second least important item was the willingness of a preview center to accept demo disks instead of a full package (item 23).
The preview center respondents were unanimous on only one item: Releasing to publishers the names and addresses of educators who use the preview center (item 21) was a very low priority. Several indicated that this should not even be regarded as a possibility. Publishers were almost evenly divided on this item, with responses all across the scale.
Two preview centers ranked providing equal treatment to all publishers (item 3) as number one, and half of the centers placed this item in the top third, yet only nive publishers assigned it to the "More Important" category. A second item of wide divergence between the two groups was the availability of computers and peripheral devices for use with the software (item 7). Seven of the 10 preview centers placed this as "More Important," while over half of the pubiishers assigned it to the "Less Important" category.

Other publishers' selections for their most important criterion were spread across the survey. For example, the number of educators having access to the preview center (item 5) was ranked first by five publishers and was ranked "More Impor-
tant" by five additional publishers, ve: twu F'iblishers ranked it in their lowest category. In con rast, the pre: - wenters' rankings show much greater agreen.ent. Differan,es of opinion bet:veen the preview center and puclisher, roups were expected, but the wide divergence of opinion within the publishers' group, often more marked than the differences between ti'e two groups, was an unexpected result of the survey. The fo 'wing chart illustrates the items' ranks according to number itt respences. It chould he noted that almost everv cell has at leasi one vote.

Item \#	More Important (top third)		Important (middle thirdi)		Less Important (bottom third)	
	Pub	PC	Pub	PC	Fub	PC
1	: 0	9	4	1	2	0
2	5	4	3	4	8	2
3	5	5	4	3	7	2
4	4	4	4	3	8	3
5	10	7	5	3	2	0
6	3	2	3	7	10	i
7	4	7	3	3	9	0
8	11	6	6	4	0	0
9	6	4	10	6	1	0
10	10	8	5	1	2	1
11	4	2	8	4	5	4
12	4	6	10	4	2	0
13	3	0	10	3	3	7
14	3	0	8	3	6	7
15	5	0	7	3	5	7
16	9	0	4	2	4	8
17	12	4	3	4	1	2
18	7	2	8	8	2	0
19	6	0	5	3	5	7
20	6	1	4	3	6	6
21	5	0	7	0	4	10
22	1	1	1	4	14	5
23	3	0	2	2	ii	8
24	9	8	5	2	2	0

Note: All respondents did not mark all items.

The New Survey

The items in the original survey have now been reduced from 24 to 10 . Any item selected as "More important" by half or more of the respondents in either category remains in the survey. These included items $1,5,8,10,16,17$ and 24 , placed in the top third by both publishers and preview centers; and items 3,7 and 12 , placed there by preview centers only.

As a cross-check, the number of publishers and preview centers ranking each item as "Lws Important" was also tabulated. Only one item that was ranked "Less Important" by 10 or more respondents was retaind for the second survey. This was item 16, ranked "More Important" by over half of the publishers and "Less Important" by four publishers and eight preview centers. It was retained in an effort to reach some consensus in the second survey.

We would now like input from the readers of The Computing Teacher. We ask you to complete the following survey by ranking the 10 suggested criteria for identifying a software
preview center. Please number each item from 1 (most important) to 10 (least impurtant). Star (*) any tems you think should be required. To have your rarking included in the final results, your survey form should be completed and received by Monday, December 1, 1986. From this survey data, we will draft a policy paper similar in format to the ICCE Policy Statement on Network and Multiple Machine Software. Included will be suggested guidelines for software publishers, software preview centers and schools as they jointly work through tie process oi previc̈uning educarinnal softuara. Your input and ideas are appreciated!

Preview Center Criteria Survey

Number the following 1 (most important) to 10 (least important). u.ar (*) any you think should be required in the criteria for any preview center.
___ Adoption of an official copyright policy to protect the publisher from unauthorized copying of software placed in the preview center
Equal treatment given to all publishers
___ Certain number of educators have access to the preview center
___ Computers/peripherals available for use with the software
_ Effectuve management of preview center ensuring that educators have accessibility to all materials
___ Staff available to assist educators in using the software, especially with complex programs, management systems, tools, etc.
__ Evaluation forms, guidelines or other established criteria to assist educators in previewing the software
___ Newsletters/flyers sent to educators to advertise new software packages
__ Accurate, current information on software: avail::Dle for preview is maintained and disseminated to educators in print and/or online
___ Folicy regulating loan of software to schools/educators to protect publishers' rights

Name:
Position:
Company/School:
Address.

Phone:
Please complete and return by Monday, December 1, 1986 to: Preview Center Survey
c/o ICCE
University of Oregon
1787 Agate Street
Eugene, OR 97403

The Computing Librarian
Edited by Carol Truett

The Curriculum, The Computer and The Magic Spark

by
Joanne Troutner
Copyright © 1985 by Joanne Troutner

Students in the world history class are busily working on their strategies for bringing about world peace in a computer simulation, The Other Side, and commercial design students are laboring over developing product logos with the Logo computer language in the compurer lab. Language arts students are researching the history of codes and deyeloping their own clues for use with C: reQuest, and a group of reading students are working on writing the direcions for making bookmarks with Print Shop. If these activities are not happening in your school and the computers are often sitting idle, perhaps you need to examine your involvement with these wonderful teaching tools. You, as the school library media specialist, are in a perfect position to see that the computer is integrated into the classroom as a teaching tool. You already possess the creativity, perseverance and instructonal design expertise necessary for this role. And who else in the school has contact with the entire staff in an informal. nonthreatening manner? You are a natural to take on the task of being the "magic spark'" in the curriculum integration formula.
First, however, it is necessary to beconic familiar with the three stages of software integration into the curriculum and the classroom. Stage one requires computer courseware which integrates into the curriculum with only a change of media. Drill and p actice, tutorial and teacher utility programs work well in this area. Stage two requires computer courseware which integrates into the ex-
isting curriculum, but requires a higher level of computer literacy and a change in the methodology used by teachers. The excellent problem solving programs, authoring languages, and programs which allow teachers to add their own material are examples in this area. Stage three contains computer courseware which requires a change in the organizaion of the school, training of teachers, and the objectives and methodology used in the classroom. Simulations, interactive video, data bases ads other application programs fit into this category.'
After you have selected several programs which fit into these categories, the task of seeing where they fit into the curriculum must be tackled. In this stage it is easy to become so enamored with a program that you attempt to push it into the curriculum whether it fits or not. Resist that temptation; it will lead to little more than wasted effort and frustration. Instead, look for an area of the curriculum which is currently being taught, then search for that piece of software which will enhance the concept. Teachers will be much more receptive to your efforts if you remember this principle.

Consider the following ideas as you become the "magic spark" in the com-puter-curriculum connection. Science teachers are always trying to teach problem solving skills; they will be delighted with Sunburst's Discover and Planetary Construction Set. Discover provides students with the opportunity to keep alien creatures alive in a controlled amoswhere. Introduce your science teachers
to this program and help them develop a way to evaluate student achievement on the program. Offer to host a grade-level tournament on Planetary Construction Set, where students use their knowledge of the solar system to actually build planets.

Lanugage arts teachers will be delighted to discover SVE's Mad Lids Writer, which uses the ever popular Mad Libs format to teach grammar and writing. Wally's Word Works by Sunburst, which provides practice on the parts of speech and allows the teacher or student to insert material, will also be popular and easily fit into the existing curnkulam.

Social studies teachers have a vanety of economic simulations to use. Ēducational Activities' South Dakota and Land of the Rising Sun are excellent tools for helping teach economic consepts and can easily be used with an (ntire class at one time. PFS: File data bases developed by Scholastic \bar{p}. ovid a treasure trove of teaching ideas and situations. Again, your help in designing the lessons and teaching data base search strategies will provide the needed spark.
Finally, one of the most versatile programs currently available for use in the prover. solving area is CodeQuest by Sunourst Commumeations, Inc. This program provides a student with prac. use in breaking a variety of seven codes and using a number of problern solving skills. In the program, the student tries to decode six different clues in order to identify a mystery object. The codes may be of seven different types in-
cluding simply having the clues wntren backwards, a series of numbers which stand for letters, a code using only pictures to represent letters, or a Super Sleuth version where the computer picks a code at random from any of the types. Students work at their own pace and may save game progress on the disk at any point. A help option provides the student with further information a aut the type of code being used. The teacher option in the progrim allows you to enter your own mystery objects a.d clues and delete student ganes.

Consider how this courseware might be used in social studies classes. Students might research the history of codes up to present-day applications. A bulletin board can be developed by students on historical figures who have relied on codes. The teacher's option can be used to enter mystery objects relating to current events for the week. A class can hold a "Famous Person" .hallenge by simply assigning groups a specific historical figure to research and having them develop and input the clues for that person. A large screen monitor or
television could be used for each group to challenge the others in class.
And CodeQuest is not just limisa to use in social studies. Language arts classes might develop mystery objects and create ciues which are all adjectives, nouns or some other part of speech. Students could write mystery stories which use CodeQuest to solve the mystery. A biography unit could be centered on famous spies and the roie that codes played in their lives. Science classes might use the solving of clues to reinforce the scientific problem solving process. In addition, students could write clues about mystery objects for a particular unit of study. Marhematics students could pick a particular mystery objert and analyze the number of times a certain letter appears in the clues and then grayh those results. Clues could be deveioped ir famous mathematicians to serve as mystery objects. Finally, art students might develop their own pic. torial codes as a result of using CodeQuest to study famous artists.
Teachers in any subject area may use the teacher option to customize the mys-
tery objects to a parucular unit and to be working at stage two ${ }^{\text {f }}$ software integration into the classroom. After the teacher's mystery objects have been entered, the program may then be used as the basis for a learning center in a corner of the room, as an assignment to be completed sometime during the week in the library media center, or as the focus of a team exercise during class. The following task cards give ideas for use with computer literacy and social studies classes and provide you with a start for becoming that necessary "magic spark" in the world of computers and the curriculum.
[Joanne Troutner, Library .Media Specialist and Educational Computer Coordinator, 3002 Roanoke Circle, Lafayette, IN 47905.)

Referesce

1. "Integraing the Compurer into the Curriculum," Conference on Instructional Computing, Indianapolis. IN, March 18, 1985, Sue Talley, Apple Compurer, Inc.

Photocopy, mount on 4×6 cards and laminate.

Computer Trivia

A. Pick a specific use of the computer such as telecommunications, word processing, programming or graphics. Develop at least three seis of six clues describing the application you pick. Put them into CodeQuest. Attempt to stump your classmates.
B. Select a person who has helped develop some type of computer. Research this person's life and produce six clues which describe him/her.
C. Write six clues which describe your fa :orite brand of computer.
D. Research at least three different computer languages. Develop clues for CodeQuest on each language.

Which President Is It?

A. Can you guess which President this is?

1. A Massachusetts native
2. A graduate of Harvard
3. Fond of playing touch football
4. Commander of PT 109
5. Wrote Profiles in Courage
6. Assassinated in Dallas
B. Pick at least five different Presidents of the United States and develop your own set of clues. Put your clues into CodeQuest and test your classmates' knowledge.

Task Card

Famous Inventors

A. Who is this inventor?

1. Born in Scotland
2. Professor at Boston University
3. Interested in speech and deafness
4. Developer of the hydreioil
5. Developer of the telegraph
6. Developer of the telephone
B. Develop a list of other famous inventors. Make a time line which shows their inventions.
C. Pick five inventors from your list and five inventions from your time line. Develop sets of clues for each. See how many classmates and other teachers you can stump.

SOFTWARE TOOLS

A One-Semester Secondary School Computer Course

by
John Bromley and John Lakatos

Why Another Kind of Course?

It is clear that increasing numbers of peopie want and need to use a microcomputer. Students, as a group, are no exception. And, like the general population, their precise needs may vary; not all students are ready to learn-or need to learn-a programming language.
Enter Software Tools, a new onesemester high school course! The goal here is for stadents to learn to use the computer as a tool by becoming faniliar with a variety of commercial software programs. It was designed to allow even less academically able students to succeed and to develop confidence in their ability to use a computer to do usefu! work. No prerequisites were set for the course (although we recommended that students take typing first), and the level of mathematics in all examples used was kept low in order to encourage reluctant math learners.
The course proved very popular with students in our school and in its first year has zenerated an enrollment of 107 students (27 percent of the school's population)!

Course Outiline

I. Data Base Systcm
A. PFS: File
B. PFS: Report
C. PFS: Graph
II. Word Processing Systems
A. Apple Writer Ile
B. Sensible Speller IV
III. Spreadsheets
A. The Spreadsheet
B. Topics

1. Design of Sheet
2. Use (What If?)
3. Saving and Printing
4. Replication
5. Functions
IV. Apple Operating Systems
A. DOS 3.3
B. Pascal
C. ProDOS
D. The Law and Disk Protection
V. Telecommunications
A. Hardware
B. Data Capture IIe
C. Information Utilities-The Source
VI. Integrated Software
A. AppleWorks
B. Topics
!. Data Base
6. Word Processor
7. Spreadsheet
8. Clipboard
VII. Drawing and Graphics
A. Logo
B. Mouse Paint
C. Print Shop
D. Micro Illustrator
E. Printing and Saving Graphics

Course Requirements

Software Tools is designed to be lao oriented. Students begin using the computers on the first day of class and spend approximately 85 percent of the total class time using them the other 15 percent is used for lecture, audiovisual presentation and student evauation). You need four important items to begin this kind of computer course.

- A computer lab with a low student/ machine ratio (our ratio was 1.6 students per Apple IIe, but a ratio of two to one should work almost as well).
- Sufficient copies of software to allow all machines in the lab to run most programs simultaneously. This is less costly than it might seem, as many software companies now offer multiple copy discounts for school use. Information on prices and availability changes often-it is 1 m portant to find out the current pricing policy of cach publisher.
- The teacher must have worked with each of the programs in urder to develop experience and confidence with them. (We spent many hours after school developing this experience.)
- You will need to reproduce command charts and other notes abous each program; we found no sutable textbooks.

Creating such a course is not an easy project, but student satisfaction and anrollment has made it more than wotih the effort.

Programs Used

This section details the programs we used with Apple IIe computers. If your lab doesn't use Apple IIe's, different programs will have to be selected. ivepertheless, the rationale and descriptions should be helpful.

I. Data Base

It was important that the course start with simple programs and work toward more complicated tools as students' confidence increased. For this reason we strected the PFS (Personal Filing System) series of programs for our firs unit. Students found the programs easy to learn but powerful enough for most of therr perceived uses. The manuals for

PFS: File, PFS: Report and PFS: Graph are well written and provide good instruction for the programs.
We started computer use the first day by encouraging students to search a data base cieated with PFS that included the names, grade levels, student numbers and computer course enrollment of all the students in the school. They first searched for their own name. The excitement of finding that the computer "knew' them was a grod way to start the course. Students went on to create their own data bases-address books and listings of personal tape cassette collections were both popular-and then to experiment with different report and graph formats.

II. Word Processing

We decided to use Apple Writer IIe, a very powerful and flexibie word processor with a relatively simple editing and printing command structure. A useful printed tutorial chapter is included in the User's Manual. During this unit a number of students also had time to explore the "electronic dictionary" Sensible Speller IV, and used it to check and correct the spelling in their work. Students tell us that this unit is the most useful one of the course. Other teachers in the school comment on how nice it is to receive typed essays and reports.

III. Spreadsheets

We chose The Spreadsheet, a progran modeled after VisiCalc, but rith a simpler command structure for printinit, loading, saving, etc. The manual in. cludes a 90 -page tutorial on the command structure of the spreadsheet.

The real chailenge in teaching about this software tool (and to some extent all the other programs) is to design an interesting assignment/project. Most stu. dents have never seen a spreadsheet and have little interest in learning the complexities of entering formulas, etc. We found that these three assignments motivated them.

- Seniors developed a budget for going off to a college or universit". iney used catalogs and tried to keep the budgets realistic.
- Younger students imagined that they were running a record/cassette store and developed a balance sheet for their store. These profit/loss sheets were less realistic than the
college budgets. but were defended by the students with vigor.
- Students developed a spreadsheet model that would calculate their current GPA (Grade Point Average).

IV. Apple Operating Systems

This unit was integrated throughout the course by necessity. The PFS series saves its data on a Pascal-formatted disk, The Spreadsheet uses Apple DOS 3.3, and Apple Writer IIe now uses the new Apple ProDOS format. Since students were required to create files on their own disks, the different (incompatibie) formats presented many opportunities for explanation and learning. Most of this instruction occurred while debugging student problems, and much oî the topic was taught one-on-one or in small groups as the information was
> "The goal here is for students to learn to use the computer as a tool by becoming familiar with a variety of commercial software programs."

needed. This unit turned out to be the hardest for most students-we were always helping students who vanted to save a ProDOS file on a DOS 3.3 disk.

Another topic we discussed throcghout the semester was disk copying, disk. protection and copyright laws. Almost every day we had to explain that, "No, you can't copy that disk. The authors and publishers of that software deserve to make some money from their investment." Following this "no copying" rule involve: a lot of enforcement, as well as educational effort.

V. Telecommunications

Students practiced less with computer telecommunications than with other units, because of the expense of hardware, international long dist. nce charges, and information utility time. We used Data Capture IIe for this section of the course. The program has good
screen menus and is relatively easy to use. We do, however, feel that telecommunications is an umportant aspect of the future of computing, and are planning to expand the time devoted to this activity. Perhaps the development of bulletin board and information uulits sumulators will help reduce "on line" charges.

VI. Integrated Software

Another growing field of importance in microcomputing is the use of integrated software. We chose to introduce students to AppleWorks, which includes a data base, spreadsheet, word processor, and a "clipboard" that allows the transfer of files between the modules. This program package comes with a two. disk, interactive tutorial. Also provided is a thick tutorial manual and a disk of sample data with which to practice. By delaying the introduction of the integrated package until late in the course, students had the chance to develop a good feel for the generation of the different elements in the program. Students were required to demonstrate their mastery of the program by creating a small dai. base and spreadsheet model and then transferring both to a letter they had written with the word processor.

VII. Drawing and Grap bics

The finale of the course, and the part most enjoyed by students, was a unit on computer graphics. Students worked with at least two different graphucs programs. We had available .Micro Illustrator (the KoalaPad program), Mouse Paint, Print Shop and Logo. None of these programs, with the exception of Logo, which we used as an extra credit assignment, require much instruction. The graphics programs are easy to use without manuals or tutorials. Student assignments asked students to draw and print a graphics image with at least :wo of the lis:ed programs.

Ftudent Evaluation

One of the least rewarding jobs of a teacher is assigning grades. In this course the evaluation is made more difficult by the wide range of student abilities. We calculated the grades based on the following system:

[^0]20\%-Practical quii.zes using programs
i0\%-Student notebook of handouts, printouts, etc.

Of these, the practical on-computer quizzes are innovative. These exercises took place about once every two weeks. Students were given a task or problem on the current topic and were required to find a solution within atullimit. Thisice problems were designed to be easily graded by checking the computer screen at the end of the allowed time. Students could use notes and command charts. but could not ask questions of their friends. Since only about half of the class could use a computer at a time, the other half was sent to another classroom for half of the period, and then the groups swapped places.

Students seemed to enjoy the change of this type of practical quiz. They also learned that they could not learn i, w to use a program by just watching their lab partner. We found in general that the computers were highly motivating; students made quite good grades in the course- 85 percent of the grades were either A's or B's.

Outcomes

In addition to teaching students how to use several different software tools, our course had other positive outcomes. A number of students who took the course decided that computers were not as hard or mysterious as they had thought. As a result, many have now enrolled in Pascal or BASIC language courses. We were also pleased to have a much higher percentage of young women enrolled in the course than we usually have ir programming classes (40 percent vs. 25 percent). Perhaps early success in the Software Tools course will encourage higher femaie enroll nent in computer language courses.
We feed that this course ofi.- a very practical kind of computing aur racy. While the course is somewhat costly in terms of computer and software resources, it seems worth the extra effort requirej to introduce a new course in a school. It has been an enjoyable course to teach. And students say they found it practical ard useful, as well as enjoyable. -

REFERENCES

Programs Used in Sottware Tools Curriculum

Publisther \& Address	Program	Sample Assignment
Apple Computer Co.	AppleWorks	Develop a personal data base, sirnple spreadsheet, and transfer the data to a letter usins the "clipboard."
Cupertino, CA 94014	Apple Writer IleType and print a two-page report; the report should be an assignrnent from a different class.	
	Mouse Paint	Draw a graphics image.

APPLE Co-op
The Spreadsheet
290 S.W. 43rd St
Renton, WA $98 C 55$

Broderhund Software, Inc. Print Shop 17 Paul Dr.
San Rafael, CA 94903
Koala Technologies Corp.
? ${ }^{\circ} 0$ Patrick Henry Dr.
Santa Clara, CA 95050
Krell Software Corp.
1320 Stony Brook Rd.
Suite 219
Stony Brook, NY 11790
Sensible Software, Inc.
210 South Woodward
Suite 229
Birmingham, MI 48011
Software Publishing Corp. PFS: File
1901 Landings Dr.
Mountain View, CA 94043

Southeaster Software
7743 Briarwood Dr.
New Orieans, LA 70128
The Source
1616 Anderson Rd.
McLean, VA 22102

PFS: Report	Print the data base using dif- ferent search and report specifications.
PFS: Graph	Draw at least two different graphs, entering data directly and reading it from a data base.
Data Capture Ile	Use program and moder to chat and/or transfer data to another computer
The Source	Use The Source menus to extract information.

[John Bromley and John Lakatos, The American Schosl of I Ima, Hpartudo , 77 . Miraflores, Lima 18, Peru.]

by
Janet Parker

Computer tools, particularly word processors, data bases and spreadslieets, hold great nromise for providing students with activities that develop higherlevel problem solving and thinking skills -skills that involve creating, analyzing, synthesizing and evaluating. Word processors can encourage the important revision stage of the creative writing process by facilitating rewriting, rewording and "playing with words." Data bases make it easy to search, sort and reorder large amounts of information to find patterns and identify trends. With spreadsheets, formulas and equations can easily be evaluated with different data to investigate the impact of variable changes and play "what if" games, analyzing the effects of different assumptious.

May we assume, then, that as more schools join the popular trend of having stucents use these tools, more and more students are developing these important thinking skills?

Not necessarily.
The potential for developing these stills is there, but it will not automatically be achieved by simply using tools. Tool-using activities span the spectrum from those involving lower-level, fairly mechanical skills, to higher-level activi-
ties which use the tools as "vehicles for thinking" to explore and manipulate words, data and ideas. We need to seriously consider how we are using these tools, develop more thoughtful approaches that clearly identify exactly what we want to achieve, then design class activities and procedures to do so.

Dofining Highor-Loval Thinkling Skills

Based on Bloom's Taxonomy of Cog. nitive Skills, lower-level thinking skills are those of knowledge and understanding. With data base work, they might include:

[^1]With word processors.

- Insertung and deletuniz text;
- Saving and retrieving text; or
- Using find/replace to correct misspelled words.
With spreadsheets:
- Entering and editing simple values and labels;
- Evaluating equations of constants;
- Entering data and recording the results of the calculations; or
- Calculating simple expressions.

Higher-level thinking, on the other hand, involves analysis, synthesis and evaluation. With data bases, this might include:

- Determining what information is needed to test a hypothesis;
- Reorganizing and synthesizing data to test ideas and find non-obvious relationships;
- Discruminating between relevant and irrelevant information; or
- Drawing logical inferences and appropriate conclusions.

With viord processors:

- Using freewriting to generate and develop ideds;
- Combining ideas into a new theme;
- Evaluating one's ideas through revising and editing; or
- Stating a position and giving supporing reasons.
And with spreadsheets:
- Investigating the coniequence of changing a particular vaiue on other values of the spreadsheet;
- Making predictions; or
- Developing models and creating simulations.
Working with a data base of United States presidents, naming the president in 1820 or listing all the presidents born in Virginia would be lower-level tasks, while sorting the data to examine if the nation being at war makes it more likely for a president to be elected to a second term is ? higher-level task. With the former example, one is merely receiving and conmunicating aata, while the latter requires processing, interpretino and
synthesizing data. Likewise, using a word processor for correcting punctuation is lower level while using it to freeflow ideas is higher level. Using a spreadsheet to maintain a budger (entering data and recording the results) might be lower level, but using the budget to conduct forecasts on projected revenue (entering sets of different data and interpreting the differences among the results) would involve higherlevel thinking.

In sum, our overall objective should be to use data bases, spreadsheets and word processors as inquiry tools to reason about and experiment with data and ideas, and to effectively use and present information.

Guidelines for Achioving Thase Objectives

1. Know the importance of keyboarding. Students need to be able to focus on ideas rather than searching for keys to effectively use computer tools.
2. Have students work in teams. There are advantages to teams of two to three students working together on computer tool projects. Teamwork encourages upper-level thinking as students share ideas, brainstorm, critique writing, and verbalize and defend strategies.
3. Allow time. Problem solving takes time-time to "futz" with th- - b lem, try different approact: $\quad \mathrm{ik}$. When writing, students need time to reread, reword and rework not only their own, 'sut also their peers' writing. When data bases are used for problem. solving, students need time to explore the data base and follow the paths of questions they develop. Not all this need be in the computer room; scheduling eff
computer time is helpful in encouraging students to plan strategies, interpret results and respond to each other's positions. But much time with computers is needed so students may become as fluent with thinking with computers as with pencil and paper.
4. Begin work processing work with creative writing activities. Students need to view the word processor as a tool to aid them in composing creative writing, not just editing To emphasize this, begin word processing work with a creative writing experience using only simple insert and delete functions. Other commands can be left to learn as students need them thus avoiding "information overload" with many fancy commands most students will never use. Minimize editing practice on a given text since it tends to emphasize often-meaningless manipulations and encourages an infatuation with the gadgetry of a word processor.
5. Provide students with a concrete data base model before soving to computers. Too many children, although able to run computer data bases, don't reaily understand what they're doing. A simple card sort activity, in which students physically manipulate index cards representing records of data, can provide understanding of what data bases are, how they work, and the importance of organizing data into fields. Adu!s can abstract these ideas, but students, especially middle and elementary students, need a physical $r=p r e s e n t a t i o n ~ o f ~ a ~ d a t a ~ b a s e . ~ . ~$
6. Provide experimse using data bases before constructing them. After providing a concrete model, the second step in data base work should be to use well-constructed data bases, not to create them. It is only after using three or four well-constructed data bases that students are able to grasp fundamental constructs that make data bases useful for research and inquiry. They the. develop an appreciation for the potential of data bases for research inquiry. Without such appreciation, student-constrieted data bases often result in lit-
the moie than list makers. For example, a data base of books read, a popular first attempt, lends itself to little more than list questions: List books about horses, or by a certuin author. On the other hand, a research/information data base might be one of countries of the world, that can be investigated for a relationship between per capita income and the literacy rate. Studen's will understand that computers are good for more than just lisis after studying these significant relationships.
7. Select quality data bases and structure ${ }^{1}$ activities. Since the data bases sturients first use will provide models, it is critical that their data be of good quality and that the searches students carry out be significant, not just recallin:s factual information. Such searches will not be easy for students accustomed to factual learning, and they will initially need structured activities, such as welldesigned worksheets that guide them through strategiss requiring higherlevel thinking. The Hunter materials (Hunter and Furlong, 1985) provide fir: examples. Structured activities help students identify and develop good questions; without direct instruction, students have difficulty developing substantive questions, and the dara base work may become a game of Trivial Pursuit. The strength of data base work comes in higher-level thinking, using good rasearch questions. A data base is just a comnuterized workbook if you don't take advantage of these higher-order thinking skills.
8. Emphasize organization and key words. Experience in searching wellconstructed data bases also helps students develop a sense of how important organization and terminology are in a data base, an understanding they will need later in constructing their own data bases. For example, searches are only successful if the search term is the jame as that used in the data base; searching a data base of famous Amrricans using the word "Black" for the field "race" will nct be successiul if the data base uses "Negro." Only after sucb experiences will students
realize the importance of consistent use of keywords in the data, and that without consistent wording the data base can't search for commonalities and patterns.
9. With spreadsheets, use carefully chosen examples that clearly Hilustrate the concept being taught. Avoid complex economic or financial equations that impress viewers with the power of spreadsheets, but may overwhelm beginners. Instead, begin with exploring variables and formulas, modeling familiar situations such as distance/rate/time problems, or rate/time worked/total pay. As Art Luehrmann note. in "Spreadsheets: More Than Just Finance" (TCT, April 1986), first examples should be ones the students are familiar with. Then emphasis can be on critical concepts such as how cells may depend on other ceils for their values, and how the values displayed are often the results of cell formulas. At the same time, examples should not be trivial problems more easily done on paper. Real-world examples appropriate to the students' level can emphasize application-leved thinking and encourage students to make up their own problems for spreadsheet solutions.
10. Provide explicit instruction that gives attention to higher-tevel thinking strategies. Such direct instruction, which makes students more aware of the problem solving strategies they use, can be provided by teacher-directed activities and by structured computer activities as described above. For example, after helping students develop good research questions for their data base work, provide instruction in the general strategies for answering such questions: clearly identifying the question asked and data needed, breaking larger questions into smaller ones, etc. Word processing students also need direct instruction to focus them on higher-level thinking strategies. For example, they benefit from guidance on using editing features to make substantive revisions rather than focusing on superficial editing. With spread-
sheets, encourage them to explore the various parameters of a problem by first predicting what would happen if a certain entry were changed, then checking their prediction.
11. Discuss how to interpret data. Work with your students to develop a concern for in-depth thinking, for discriminating relevant frorr irrelevant information, and for deveoping reasoned and supportable opinion. Getting data from a data base or spreadsheet is only the beginning; interpretations and inferences need to be drawn. Students need to br pushed beyond simple knowledge (lower level) of the data, toward analysis, synthesis and evaluation (higher level). You will have to work to take students bejond the level of simple data input, recall ar i listing, toward evaluating what they see, making inferences about what it means, and coming up with some kind of meaning in terms of solving questions or problems. Students will need to be pushed beyond the superficial to the substantive.

It is fairly easy for students to learn the mechanics of using the editing features of a word processor, the sorting features of a data base, or the recalculation features of a spreadsheet. But higher-level thinking with computer tools will not happen by itself. A few students, engrossed by the thought flexibility computer tools offer, may dievelop techniques themselves. But for these tools to reach their full potential on a broad scale will require thoughtful teacher intervention.
Show your students where the real power of computing lies, and help them develop better thinking skills.

IDr. Janet Parker, Early and Middle Childhood Education Department, School of Education, University of Louisville, Louisville, KY 40292.J

References

Hunter, B. and M. Furlong, Scholastic pfs: Curnculum Data Bases for U.S. History. New York: ischolastic, Inc., 1985.

McLeod, R. and B. Hunter. Scholastic pfs: Curriculum Data Bases for Life Sctence. New York: Scholastic, Inc., 1985.

Software in the Classroom A Form for Teacher Use

by
Cynthia Burt
'oorl',

Clessification amd Speeification

The first section, Clessification, gives basic information on the package, the location (classroom, media center or lab, for example), and "special equipment." which includes hardware, software and peripherals needed, but also might include a set of encyclopedias, a map, or even pencil and paper.
Specification tells you about the contents and presentation. Subject area and specified topic are useful as curricula guides-for example. "math; multiplication of whole numbers." A grade level determination is noted here, as well as the type of program (nften more than one will apply).
Many packages include an assortment of individual programs. These can be listed in the Menu section to maximize classroom use of the package. A mnemonic, such as a sketch of a particular screen, may help in the recall process. ess.
If Management and/or Recordt.eeping options are provided, the package will be more flexible and useful. It also means you may have to adjust parameters and prepare rosters before using the program with the class.
Many school dist:icts and other organizations publish softwäre evaluation forms that include general descriptions and categories such 3 " "good documentation" or "ease of use." Another evaluation technique describes the software and analyzes it for strengths and weaknesses.

The analysis proposed here focuses on classroom use of a particular program after it has been reviewed and purchased. The intention is to provide you as a teacher with a systematic "recollec. tion" of education.al programs. It is nnt a purchase request to administrators nor does it necessarily constitute a recommendation to other teachers.

Such a method of recalling specific programs and their uses in a particular class will be valuable as the amount of software you have previewed and/or used increases. There are five sections, though not all sections need to br mpleted. Some information be gleaned by a preview of the soltware, with more ideas added after the package has been used with the students. The analysis narrows its focus from general
sification to the actual logistics of her and student involvement.

The Comment section is used to describe the program's attributes. Here it may be helpful to mention the suitability oi à particular menu ieem, for example.

Lesson / Unit Invoivement

The third section. Lesson/Unit Involvement, narrows the focus to the use of the package in your unit and lesson.

In what capacity is the package used? For remediation, for standard instructuon or as an enrichment activity? Have you already developed a particular unit and lesson plan that the package coul: enhance or replace?

Now the purpose of the program can be determined. Does the package introduce a unit or review a lesson? Perhaps its best use is as a motivating activity or reinforcement. If management and rec-ord-keeping options are provided, it may also be appropriate for testing.

The last part of this section consluiss whole class and individual student management questions. Note any copyright restrictions: Can a single copy of the program be used with more than one computer at a time? Note here also whether the program is designed for individual use, or whether it can manage small groups of students. Stull other packages can support a classroom demonstration. And regardless of the number of users, some kind of timetable is needed. Will students sign up to use the program? ls it realisuc to assign a student to run the program at a specific time? Although the time needed to complete any program will vary somewhat from one student to another, tutorials and simulations generally take much more time to complete than a drill and practice program. For optimum use of any package, the time element must be considered.

The final two sections of the Use Analysis consider the logistics of teacher and student involvement. The section may be filled out before and/or after using the package in the classroom. This involvement will vary with each package, teacher and class. Remember, this is neither a purchase order nor a product review-these areas are to remind you about effective uses of the software in your classroom.

Teacher Involvement

Under Teacher Involvement you may wish to make notes about the need for orientation to a package. Sometimes a lesson or two is needed brefore the pack-
age can be used effectively. If management is provided, the roster may need thecking and updating. Are the limits and ability levels approprate for yo: students? While the program is in use, you may also want to moritor students' behavior or performance. (Exciting or yery fast activities can sometumes encourage abuse of the keyboard.) After $i^{3}:$ program is used, does a score need to be iecorded? (This may be critical in: student reinforcement, especially if the program lacks management.)

The Student Invoivement section can be used first to anticipate student use of the package. Do students need to sign up? Will they be able to comprehend the directions? Is the program likely to encourage verbal responses? If so, will this disrupt the rest of the class? Are the graphics likely to distract students from the subject matter? Will they know how to respond to the program's quenes? How will stidents know when therr ume is up? Can they recognize the end of the problem set? Will they be responsible for recording their own scores?

Organizing Your Data

There are numerous ways of filing your Classroom Use Analysis sheets. You may want to maintain a private notebook by subject area of both suttable and unsuitable programs. This notebook will become a real ume saver when searching for an appropriate program and avoiding inappropriate ones. Having the analyses in one portable notebook will also remind you of packages you've reviewed previously.
You may also want to file each analysis sheet with the appropriate lesson plan. Then, as you prepare a unt, the program can be easily integrated.

If you are very organized, you may want to combine the two methods. A : vll address-type book can hold the na...es and publishers of the programs you have viewed, while the lesson plans contain the analysis sheets.
And last, each program could be filed with a notebook of all use analyses gathered for it by all those previewing and/or using the program. A good wat to share ideas and save time! The notebooks could be kept in the media center. where the analyses could be entered and manntaned on a data base. U'sing sott. ware in the classroom can enhance learring and offer rewarding experiences if you plan for its effective use.

Creating a Software Review Collection

by
Glenn Fisher

Abstract

Are you getting bogged down in software reviews, which seem to be everywhere, but never so that you can locate the one you need? Here in Alameda County we, like many other districts, have a large collection of software reviews from many sources. In the past they could be found in the magazine rack, in the back issues area, in the Computer Center and on office shelves. When teachers canne in to preview software or to obtain information about software, they found it almost impossible to locate reviews of specific programs. We needed a way to organize all the reviews. Here's what we did.

Our Solution

We established three separate coilections of copies of all of the reviews.

Set 1

This collection of reviews is kept with the software avallable for preview. Specific reviews are filed individually with the folder containing that particular disk, so that anyone previewing a program has easy access to all its reviews.

Set 2

This collection is organized first by subject area and then by software title, so that a teacher looking for social studies software, for example, has easy access to all reviews within that subject area.

Sel 3

This collection is organızed by company name, so that the reviews of a particular company's products can be easily found.

None of the collections are individually indexed or otherwise referenced-there is simply too much material to do that!

The Process

Reviews come in many different formats; someone needed to scour three years of magazine back issues as well as locate those packaged in sets with various bindings. To compound the task, almost all reviews are printed with more than one review on a page. In order to make separate and uniform copies of each individual review, blank sheets of paper were cut, waxed in our production department so they would adhere temporarily, and then used to mask all parts of a page but the review being copied. The result? -three separate copies of each review for the three collections described above.

Keeping track of which reviews we had copied turned out to be a bigger problem than we had anticipated. We used two methods: we checked magazines on the front cover when copied, and we made up a matrix of sources (magazines) and months, checking the box when each issue was started (\sim) and crossing it out (x) when the issue was completed. We simply lined out months when no issue arrived.

Organization

We used the foilowing subjec! areas for our Set 2 sollection

Ar.	Language Arts (2 binders)
Basic Living Skılls	Library Skils
Busuness	Logıc and Problem Solving
Computer Literacy	Miscellaneous
Computer Programming,	Math/Advanced
Utilities	Math/Arıthmetıc (2 binders)
Counseling/Careers	Math/Statistics
Data Bases/Adminisiration	Music
Early Childhood Education	Sci nce
Foreign Language	Social Studies
Health/PE/Nurrition	Teacher Utilities

The title of each review was underlined as it was copied. If a subject area was given, it was also underlined; if not, the appropriate subject area was written on the review. This proved to be an enormous help, both for us and for teachers trying to locate a particular review.

We encountered obvious copyright problems. Because it is illegal to copy entire sets of materials, we contacted the sources of commercial reviews regarding our project, and most gave us at least verbal permission. We already subscribed to multiple copies of most of the magazines, and for one source we simply purchased two subscriptions. Besides the time commitment, this copyright issue is the major problem to resolve if you undertake a similar project. You should clear your intentions with all sources of commercial reviews you intend to include.

This project took a lot of time and over one box of paper! Two high school students who assisted in the Computer Center did the copying, sorting and binding. An adult supervised and answered category-related questions. It is estumated that the two students worked over 100 hours in the past year and a half. It now takes between two and four hours of student ume a week to keep the review collection current.

The review collection has proved very useful to teachers who are involved in selecting or evaluating software. The ability to see all reviews within a single subject area in one place allows teachers to compare different programs, and also to get a good idea of the range of software available in that area. This project was voted one of the most useful services of the Computer Center by district computer representatives.
E.ND

IGlenn Fisher, Computer Spectalist, Alameda County: Superintendent of Schools Office, $3 l 3 \mathrm{~W}$. Winton Ave., Hayward, CA 94544.J

Reprinted from The Computing Teacher. .1 urch 1985 Vol. 12 .Vo. 6.

SOFTWARE ORGANIZATION

by
Leon Roland

Every school should organize information about its software collection to maximize use. There are three mann ways such information may be accessed:

1. Listing of available programs with a short description can be made. Such a list is similar to bibliographies or reading lists typically available for teachers.
2. A key-word or subject-heading search of a data base can be done.
3. The software can be cataloged and cards prepared for addition to the library card catalog.
Three basic steps are required for any of these methods of organization: data collection, data storage and data retrieval.

During data collection, all necessary data to be used in the cataloging is acquired. Placing the material in a data base allows for efficient storage and retrieval of the iniormation in the desired form. The information could be retrieved ua printer or video display; some of the common printed forms used are labels, anriotated t_{i} bliographies, tute listungs and card catalog cards.

Although all of these steps are necessary, the exact process will vary to meet each school's needs. The following are some ideas and methods of organization which can provide computer users in your school efficient access to the avalable software.

DATA COLLECTION

The data collected on each software package will depend on the amount of information a school wants to mantan. It is important to involve teachers, librarians and computer personnel in deciding what data should be collected. Figure 1 shows a data collection form. Remember, it is easier to collect too much data the first time than to find yourself needing to gather more information later.

Notes:

Titie-Typically used as the main entry for the card catalog, because most teachers identify a program by title and because many programs do not supply the author's name. However, if the author's name is given, it is to be used as the main entry card.

Version-Necessary to determine if you have the updated or current version. Many programs are continually modified to eliminate bugs or to add options.

Type-If the program spans more than one type, the catalog can have extra entries, or simply list the predominant type and explain the format more completely under Contents. If a disk contains more than cise program, such as MECC disks, it is best to catalog eacn program separately.
Sowrce-The company producing the software, not the vendor. This may be needed if you need assistance with the material.

Accession number-Provides filing order as well as indicating the copyright status of the material. The accession number can include " C," " P," " D " or " L " to signify whether the software is Commercial, Public Domain, Data or Licensed.

Grade(s)-Often suggested on the package. If you must determine grade levels, keep the range broad.

Contents-Describes the software. Again, if a disk has more than one program, it is usually best to catalog each program individually. If not, then all of the programs contained on the disk should be listed. In cases where a disk has several programs that are all part of one system (for example, a data base with separate modules for entering, processing and printing the data), each module need not be listed as a separate program.

Computer-This information is important if the school has different computers, since software is often not interchangeable.

Material-Indicates items making up the package such as a user's guide or student worksheets. Teachers need to know about such materials in order to best utilize the program.
System-Refers to the memory size. DOS and other items such as a light pen needed to use the program.

Department-Used as a selection code if information is placed in a data base. A code such as " M '" for mathematics or "L" for library might be used to allow the inforimation to be
selected from the data base. If you wish to be very precise in your coding, you could use "M10" or "M60" to code specific learning objectuves.

Rating-Useful if the district has an evaluation policy, but sometimes diff.sult to assign. The catalog listing might include brief comments by users.

DATA STORAGE

Since the computer is an excellent information processor, it is logical to store the collected data in a data base. Many data base programs san maintain the needed files. Many of these programs will also allow you to produce bibliographies and other desired materials. A word processor can be used to store and produce these files. A specialized data base designed to handle only the cataloging of computer software may also be used. You should study these programs carefully, because they may require you to accept the method of cataloging and output designed by the developer.
The actual entering of data is not difficult once the data base is designed or selected.

DATA RETRIEVAL

The data file may be used for many different types of both printed and video output. However, most schools lack a sufficient number of terminals to use only video output and will require printed output. The four types of output presented in this article are directory, bibliography, labels and card sets.

Bort the directory (figure 2) and bibliography (figure 3) forthats include the program title and accession number. In addition, the bibliography contains a short description of the program, which may help some teachers determine the usefulness of a particular program.

> Figure 2
> Directory

Crossmord Magz C C 15
Grace gook C 12
Library Overcue C 10

Figure $=$
Bioltography

```
Crosmord Magzc c is
```

Will Craste crossmord puzzle using your words and elues. Createg puzzis aay oe played an sho serten or printed using Eho oranter.

```
Library Overdue
    C 10
    Masntasne & &ile of overdue booke
```

The third type of output is a label for disks and other material contained in the package. Figure 4 shows a label made using a standard mailing label. The first line contains the accession number combined with a single letter (in this case, " C "') indicating copyright status. The second line is the program name. The source is printed in the third line and the computer type is in line four. The last line contains system requirements. This label provides the basic information needed for filing and identification.

$$
\begin{aligned}
& \text { Figure } 4 \\
& \text { Label } \\
& \text { C } 15 \\
& \text { Crossword Magic } \\
& \text { L \& S Computerware } \\
& \text { Apole II } \\
& 40 \mathrm{~K} ; 3.3 \mathrm{SO5} 5 \mathrm{I} / 4 \mathrm{sem}
\end{aligned}
$$

Figure 5 shows a mann entry card for a card ca:alog. (The cataloging process should follow the AACR 2 [Anglo American Cataloging Rules] recently developed for computer software.) in this example, the use of concensed print allows more information to be placed on one card and elımanates the need for multiple card entnes. The MRDF in the upper left stands for Machine Readable Data Files. A complete set of cards may be made using the tracings given at the bottom of the card. The shelf list card can be chanized so the cost and vendor of the software appears on that card.

Although schools may use different forms or processes for collection, storage and output, the basic idea is the same. Efficient use of software (and other media resources) depends on easy access to the right information about the software. The media specialist can use a computer to organize this information and output it in convenient forms. Computergenerated bibliographies and catalog cards, as well as computer data bases, have an added benefit. Teachers and students can see, in a non-threatening way, how software can be used in specific subjects, along with the books and AV materials they've been using all along.

TThe author has written a program for making bibliog. raphies and will be happy to share this program, along with other public domain programs he has written, with ICCE Members for 55. Programs written for an Apple II - or Ile. but the code is easily convertuble. Leon Roland, Dept. of Science and Mathematics Education, Wenıger 253. Oregon State Universuy, Corvallis, OR 97331.]

Software Copyright Interpretation

by
LeRoy Finkei

I have been asked to reconvene the ICCE Software Policy Committee so that we may examine the current state of the art (things in law tend to change over time) and review our curreat policies. As we prepare to meet, it seems appropriate to share with The Computing Teocher readers the best information we have regarding current interpretation of copyright laws.

There are no definitive answers to most of the questions we have, since the copyright law is vague in places and there have been no court cases to set precedent. Nevertheless, copyright attorneys, court warchers and lawmakers all seem to agree on how a court would interpret the current law if and when a case came before it. Not wanting to get sued and wanting to encourage software development by vendors. I prefer to take a conservative approach that looks to how the law will likely be interpreted, rather than waiting for the definitive decision by a court. In other words. I don't want to be the test case!! Do you? For those who doubt that publishers will sue a school district or teacher, be reminded that the American Association of Publishers did sue New York University, that a BOCES in New York was also sued (borh public agencies lost their cases), and that while publishers may not sue, their professional associations seem willing and able to do so.

The issues:

1. Beck-up copies. You are allowed back-up copies (number uncertain) that are to be used for archival purposes in the event your original copy fails. Such copies are not to be used on a second machine at the same time as the original. Since a backup is allowed by law, and if your vendor does not provide one or allow a process by which you can acquire one, then you may make onc. But its use is restricted as stated above. Vendors who offer "multiple" back-up copies are using the term "back-up" incorrectly and have been asked to use the term
"multi-copy discounts," which more accurately reflects what they are offering you.
2. Multipietoading or booting from one disk into maltiple machines at the same time. "In the absence of a license that explicitly permits you to do so." you would likely be in violation of the copyright laws if you loaded multipie computers with the contents from one disk for use as the same time. The legal concept has to do with the "proliferation of simultaneous users." The law is designed to protect the copyright hoider from loss of sales. If Bank Streer Writer is sold for use on one plachine (and it is), and you load it into 15 machines, one after the other, so that all 15 are in use at the same time, you are inhibiting sales. Thus, you are in violation of the law. The fact that you con physically load the contents into multiple machines is irrelevant. The law does imply that sequential use on different machines is oxay (first on one machine, turn it off, then on another machine). The key element here is proliferation of "simultaneous' users. That one concept
has helped me out a lot. Two companies have recently announced simultaneous-use or multiple-loading software. They have been asked to emphasize that this is a special license for a particular prece of software. One solution to the mul-tiple-loading "probiem" is multicopy fricing and licensing, an option more compantes seem to be taking.
3. Networks. "In the absence of a network license'" you would likely be in violation of copyright laws , f you downloaded a program to multiple stations at the same cirre from your network, be it a hard disk or floppy disk network. The "proliferation of simultaneous users' concept described above would again apply. Whether it is physically possible to load the stations from the network is not germaine to this discussion. The absence of a license permitting simultaneous use is the copyright issue.
It is not enough for districts to merely pass copyright policies-we must pay heed to them. It is the responsibility of each of us to be a role model to fellow teachers and students alike ard allow only legal uses of software on our campuses.

If you have questions, comments or information for the committee, please write me. Since the law is somewhat different in each country, 1 would like to hear from people willing to serve on subcommittees for specific countries.
[LeRoy Finket. San Mateo County Office of Education, 333 . Matn Sireet, Redwood City, CA 94063.J

1987 Statement on Software Copyright An ICCE Policy Statement

Permission to reprint all or part of this document is granted, Please acknowiedge the ICCE Software Copyright Committee.

Background

Durng 1982-83. educators. software developers, and hardware and software vendors cooperated to develop the ICCE Policy Statement on Network and Multiple Machine Software. This Policy Statement was adopted by the Board of Directors of the International Council for Computers in Education (ICCE) in 1983, and was published and distributed. It has received support from hardware and software vendors, industry associations and other educauon associations. One component of the Policy Statement. the "Model D_{1},trict Policy on Software Copyright:" has been adopted by school districts throughout the world.

Now, three years later, as the educational computer market has changed and the software market has matured. ICCE has responded to suggestions that the policy statement be reviewed by a new committee and revisions be made to reflect the changes that have taken place both in the marketplace and in the schools.

The 1986-87 ICCE Software Copynght Commuttee is comp, sd of educators, industy associations, hardware vendors, software developers and vendors, and lawyers. All the participants of this new Committee agree that the educational market should be served by developers and preserved by educators. To do so requires that the ICCE Policy Statement be revisited every few years while the industry and the use of computers in education are stull developing.

Responsibilities

In the previous Policy Statement, lists of responsibilities were assigned to appropriate groups: educators; hardware vendors, and software developers and vendors. The suggestion that school boards show their responsibility by approving a district copyright policy was met with enthusiasm. and many districts approved a policy besed on the ICCE Model Policy. The suggestion that software vendors adopt muluple-copy discounts and offer lab packs to schools was likewise well received; many educational software publishers now offer such pricing. It is therefore the opinion of thr zommittee that, for the most part, the 1983 list of recommendations has become a fatt accomph within the industry, and to repeat it here would be an uinecessary redundancy.

Nevertheless, the Committee does suggest that all parties involved in the educational computing market be aware of what the other partues are doing to preserve this market, and that the following three recommendations be considered for adoption by the appropriate agencies.

School District Copyright Policy

The Committee recommends that school districts approve a District Copynight Policy that includes both cemputer software and other media. A Model District Policy on Software Copyright is enclosed.

Particular attention should be directed to item five. recommending that only one person in the district be given the authonty to sign software licensing agreements. This implies that such a person should become famuliar with licensing and purchasing rights of all copyrighted materials.

Suggested Software Use Guidelines

In the absence of clear legislation. legal opinion or case law. it is suggested that school districts adopt the enclosed Suggested Software Use Guidelines as guidelines for software use within the district. The recommendation of Guidelines is similar to the situation currently used by many education agencies for off-arr video recording. While these Guidelines do not carry the force of law. they do represent the collected opinion on fair software use for nonprofit education agencies from a vanety of experts in the software copyright field.

Copyright Page Recommendations

The Committee recommends that educators look to the copynght page of software documentation to find their rights, obligations and license restrictions regarding an individual piece of software.

The Committee also suggests that software publishers use the documentation copynght page to clearly delineate the users' (owners' or licensees') rights in at least these five areas:

1. How is a back-up cony made or obtained, how many are allowed, and how are the back-ups to be used (e.g. . not to be used on a second machine at the same time)?
2. Is it permissible to load the disk(s) into multiple computers for use at the same tume?
3. Is it permissible to use the software on a local area network, and will the company support such use? Or is a network version available from the publisher?
4. Are lab packs or quantity discounts available from the publisher?
5. Is it permissible for the owner or licensee to make copies of the printed documentation? Or are additional copies available. and how'

ICCE--Suggested Software Use Guidelines

The 1976 U.S. Copyright Act and its 1980 Amendments remain vague in some areas of sotiware use and its application to education. Where the law itself is vague, software licenses tend to be much more specific. It is therefore imperatuve that educators read the software's copyright page and understand the licensing restrictions printed there If these uses are not addressed, the following Guidelines are recommended.

These Gudelines do not have the force of law, but they do represent the collected opinion on fair scftware use by nonprofit educational agencles from a variety of experts in the software copyright field.

Back-up Copy: The Copyright Act is clear in permitting the owner of software a back-up copy of the software to be held for use as an archival copy in the event the original disk fails to function. Such back-up copies are not to be used on a second computer at the same time the original is in use.

Multiple-loading: The Copyright Act is most unclear as it applies to loading the contents of one disk into multuple computers for use at the same time. In the absence of a license expressly permitting the user to load the contents of one disk into many computers for use at the same time, it is suggested that you not allow this activity to take place. The fact that you physically can do so is irrelevant. In an effort to make it easier for schools to buy software for each computer station, many software publishers offer lab packs and other quantity buying incentives. Contact individual publishers for details.

Local Area Network Software Use: It is suggested that before placing a software program on a local area network or disk-shanng system for use by multiple users at the same time, you obtain a written license agreement from the copynght holder giving you permission to do so. The fact that you are able to physically load the program on the network is, again. irrelevant. You should obtain a license permitting you to do so before you act.

Model District Policy on Software Copyright

It is the intent of [district] to adhere to the provisions of copyright laws in the area of microcomputer sofiware. It is also the intent of the district to comply with the license agreements and/or policy statements contaned in the software packages used in the district. In circumstances where the interpretation of the copyright law is ambiguous, the district shall look to the applicable license agreement to determine appropriate use of the software [or the district will abide by the approved Software Use Guidelines].

We recognize that computer software pracy is a major problem for the industry and that violations of copyright laws contribute to higher costs and greater efforts to prevent copying and/or lessen incentives for the development of effective educational uses of microcomputers. Therefore, in an effort to discourage violation of copynght laws and to prevent such illegal activities:
1.The ethical and practical implications of software piracy will be taught to educators and school children in all schools in the distnct (e.g., covered in fifth grade social studies classes).
2. District employees will be informed that they are expected to adhere to section 117 of the 1976 Copyright Act as amended in 1980, governing the use of software (e.g., each ouilding principal will devote one faculty meetıng to the subject each year).
3. When permission is obtained from the copyright holder to use software on a disk-sharing system, efforts will be made to secure this software from copying.
4. Under no circumstances shall illegal copies of copynghted software be made or used on school equipment.
5. [Name o: job title] of this school district is designated as the only individual who may sign license agreements for software for schools in the district. Euch school using licensed software should have a signed copy of the software agreement.
6. The principal at each school site is responsible for establishing practices which will enforce this distnct copyright policy at the school level.

The Board of Directors of the International Council for Computers in Education approved this policy statement January, 1987. The menibers of the 1986 ICCE Software Copyright Committee are:

Sueann Ambron, American Association of Publishers
Gary Becker, Seminole Co. Public Schools, Florida
Daniel T. Brooks, Cadwalader, Wickersham \& Taft
LeRoy Finkel, International Council for Computers in Education
Virginia Helm, Western Illinois University
Kent Kehrberg, Minnesota Educational Computing Corporation
Dan Kunz, Commodore Business Machines
Bodie Marx, Mindscape, Inc.
Kenton Pattie, International Communications Industries Association .
Carol Risher, American Association of Publishers
Linda Roberts, US Congress--OTA
Donald A. Ross, Microcomputer Workshops Courseware
Lary Smith, Wayne County Int. Schl. Dist., Michigan
Ken Wasch, Software Publishers Assucsation

102

The Most Important Criteria Used By the Educational Software Evaluation Consortium

by
Gary G. Bitter and David Wighton

The Educatıonal Software Evaluation Consortum is an organization of non-profit evaluation agencies which meets annually to share information and to produce an annual preview guide to quality educational software maternals. Most of the agencies are associated either with state/provincial departments of education, regional agencles, or specific school districts. The 1985 membership consisted of the following 28 organizations:

Alberta: Department of Education
Arizona: Arizona State University Microcomputer Research Clinic
Britush Columbia: Ministry of Education
Califorma: TECC Software Library and Clearıng!.ouse California Educational Computıng Consortum Library Media Consortum Computer-Using Educators
Department of Defense Dependents Schools
EPIE Instutute
Florida: Department of Education
International Council for Computers in Education
Illinois: Micro-Ideas
Indiana: Clearinghouse for Computer EJucation
lowa: Micro Libranes
Loussiana: Department of Education
Maryiand: Montgomery County Schools
Michigan: Michigan Association for Computer Users in Learning
Oakland Schools
MICROSIFT
Minnesota: Department of Education
New York: Department of Education New York City Schools
North Carolina: Department of Education
Oklahoma: Oklahoma State University
Oregon: Center for Advanced Technology in Education
South Dakota: Department of Education
Texas: Education Computer Cooperative
Wyoming: Department of Education

Through the cooperative exercise of preparing each annual Educational Software Preview Guide, members of the consortum are able
to assist each other in idenufying products which might be potentually useful to educators in their regions. With each organization assessing a minimum of 100 products, the cumulative effect of sharing information resuits in a large number of products evaluated. For example. The 1986 Educanonal Software Preview Guide contained 573 product listungs and was based on 4.822 separate assessments by consortium members.
As members come from different areas and as they represent orgamzations with varying purposes, it is not surprising that the methods of evaluation and the criteria on which these assessments are based also vary. During the discussions leading to the preparation of The 1986 Educational Software Preview Guide. members agreed that such variances were likely, but were curious as to the extent of these differences. In addition, the consortium members decided that it would be useful to identify those criterna which were most critical, to assist software evaluators in reviewing their own evaluation processes. The identufication of these most important characteristics was also felt to be eseful to the educatonal community at arge. In effect, these represent a list of what are perceived by the majority of educational software evaluation agencies to be the most important characteristics of quality educational software.
The first part of the study consisted of a request to each member to submit "the 20 most important characterisucs you use to evaluate software in your review process." Sixteen members responded and therr 320 criteria were then examined for distunct characteristucs.
We identified what appeared to be the most common criteria and 22 were selected. Criteria addressed in different ways by many members were grouped under general headings. For example, the general heading "user friendliness" was used to include such specifics as "sufficient information for program use," "directions are easy to follow." "user can move easily through the program." "on-screen instructions provided," etc.
From the 22 criteria a questionnare was developed. Each consortum member was asked to rank order the 22 tems from the most important citteria for judging educational software to the least significant at their selection site.
Eight-six percent of the consortium members rank ordered the trems in the questionnare The resuits of the questionnare were tabulated and ata average rank score was computed tor each response. The rank is as folows:

RANK

CHARACTERISTIC

1. Correctness of Content Presentation-Is the program free from content. informational, computational. grammatical and syntactical errors?
2. Content Presentation-Is the pedagogical content presented in a clear, concise. logical and manageable fashion and in sufficient depth of instruction and/or practice so that learning will take place?
3. Use of Technology-Is this an appropnate use of computer technology, such that the program takes full advantage of the computer's capabilities and provides students with a learning experience that cannot be presented better in another media?
4. Integration into Classroom Use-Can the program be effectively and easily integrated into classroom use? Does the software lend itself to use within a classroom tume frame? Are effective and appropriate teacher support materials available? Can the program be easily used by a teacher?
5. Ease of Use-Is the program user friendly?
6. Curriculum Congruence-Does the content directly support the zurriculum?
7.5 Interaction-Is interaction effectively achieved for the target audience? Is there a sufficient amount and a sufficiendy high quality of interaction to promote learning?

RANK CHARACTERISTIC

7.5 Content Sequence/Levels-Are there multiple levels of difficulty with appropnate incremental steps between the levels. so that the development sequence and the difficulty of the levels is appropriate to the target audience?
9. Rehability-Is the program free from programming and technical errors?
10. User Control of Program-Can the user (student or teacher) control the rate, amourt and sequence of presentation?
II. Feedback (general)—Does the program correctly assess student input and provide appropriate and effective feedback messages?
12. Objectives-Are objectives clearly stated, and are they met?
13. Motivation-Is the program motivational?
14. Branching-Are there branches to provide individualized instruction according to each student's needs?
15. Negative Feedback/Help-Are corrective feedback messages or help screens provided as needed?
16. Content Modification-Can the content be modified by the teacher?
17. Content Bias-Is the content free from bias (race. sex. cultural. ethnic, stereotyping, violence)?

RANK

CHARACTERISTIC

18 Teacher Documentation-Is the documentation comprehensive. easy to understand and well organized?
19. User Support Matenals-Are user support maternals present? Where prsent. are they approprate and effective?
20. Color. Sound. Graphics. Animation-If these features are present. are they used effectively to enhance the program?
21. Screen Displays-Are screen displays effectively and appropriately formatted?
22. Management System-Is there a management system which provides an effective means for record keeping and/or assugnment control?

Summary

The results indicate a strong emphasis on content and pedagogy versus computer-related characternstics. The first ranking was on correctness of content presentation, and the second chorce was on effectiveness of content presentation. The third choice looked at the appropriate use of technology, then the fourth choice emphasized content again. with the integration of the program into the classroom.
Among the lower rankungs was use of computer features such as screen displays. color. sound. graphics and animation. rated as 20 and 21. The question of a management system which provides an effective means for record keeping and/or assignment control was ranked lowest of the 22 most important criteria.
Many of the 22 items overlap and are difficult to rank-order. But it was obvious that ease of use and machine presentanion have shifted from top priorities to assumed priorities. The emphasis is on pedagogy, integration and content.
We have since given this survey to inservice and preservice teachers and found a high correlation between the two groups. The number one choice varies, but the correlation is high.

Recommendations.

1. On the basis of these results, it is apparent that software evaluation inst aments need to emphasize content-related criteria. Many of the checklist instruments and evaluation repors that were used several years ago seemed to emphasize technical questions. As a result, it was common to find reports that discussed program reliability, the use of color and graphics, etc.. but little attention was paid to whether the pedagogical content had been appropriately developed.
2. Teachers need to focus software review on the "educational" half of the term "educational technology"' Five of the top eight criteria relate to the pedagogical content of the program. Is the content accurate? Is it presented in a clear and concise manner with sufficient depth of instruction? Does the program's content support the curriculum? Is the sequence of activities appropriate? All of these questions measure the educational value of the product-an emphasis that is granfying to see. Teachers can now evaluate software in relation to the curnculum and pedagogy.
3. More research needs to be done to determine the most effective computer feedback which can be provided to the learner. Whether the computer provides effective feedback is difficult to determune. Interaction, feedback, user control. branchung and corrective feedback are all important for developers and reviewers to consider.

+ Teachers. reviewers and developers of sotware should first consider sound pedagogical principles. The content should be clearly and accurately presented. with sufficient depth of instruction and practice within a sound developmental sequence. Sortware should make the interaction easy to achieve and meanungful: allow the user to control appropnate parts of the learming activitues: use branching to meet individual needs: and provide more assistance to a learner having difficulty than just the presentation of the correct answer. Obviously the developer needs to involve more teachers and curricuium specialists in the planning of sottware programs.

5. The curriculum is now the issue in software and teachers can be helpful in the review process Software evaluation is tume consuming and teachers need to be given release ume to provide input into software selection.
[Gary Bitter, Diviston of Curnculum and Instruction. College of Education. Arizona State Univ. Tempe, AZ 85287: and Davd Wighton. Wighton CAl Services Lid. . \#204, S104-82nd Ave., Edmonton, Alberta, Canada T6B OEG.l
For information on membership in the Educational Softiware Evaluation Consortium, contoct Ann Lathrop at the San Mateo Counry Office of Educatıon. 333 Main St., Reawood City. CA 94063.
The 1987 Educational Software Preview Guide is available from ICCE, University of Oregon. 1787 Agate St. . Eugene, OR 97403. for $\$ 8$ In addition to The 1987 Educational Software Preview Guide, the publication also includes arncles on sofiware selection. evaluation and management.

NEW FROM ICCE

Teach with databases in any subject!

Teaching Thinking Skills With Databases, a new step-by-step guide for Grades 3-8, provides detailed instructions and ideas for teaching with databases in any subject area.

Fifteen steps progress from lower crder to higher order thinking skills, and each step is illustrated with scripted lesson plans on the 50 United States. (The states unit serves as a model for any subject area.) Teaching Thinking Skills With Databases contains 14 data files an disk and 46 worksheet and transparency masters, all puckaged in a three-ring binder.
Available for AppleWorks ${ }^{\circ}$ and FrEdBase." Purchase price includes school site license. By Jim Watson. $\$ 30$ plus $\$ 3.50$ U.S. shipping prepaid; $\$ 5$ non-U.S., Alaska, Hawaii, or P.O. Box shipping. ICCE members receive a 10% discount by giving their membership number on the order. Quantity discounts are available. All unpaid orders are charged $\$ 2.50$ for handling.
For more information. see Jim Watson's article in The Computing Teacher, August/September 1988. To arder, contact ICCE. University of Oregon. 1787 Agate St., Eugene, OR 97403-9905. Ph: 503/686-4414. -Also avalable from ICCE for $\$ 25$ plus $\$ 3.50$ for shipping.

GOOD JUST GOT BETTER!

This revision of Linda Rathje's popular workbook improves upon the earlier edition by including a section on the mail merge function, expanded integration activities, a glossary, and The Computing Teacher's most current articles examining application software in the classroom. It guides the beginning - and now intermediate - AppleWorks© user through word processing, database and spreadsheet management, and printer options. Each section provides step-by-step instructions and practical applications for educators.

The new AppleWorks for Educators is laser printed and includes a data disk of working examples to guide you through each application as it appears in the workbook.

With the busy workshop season right around the comer, now is the
 time to call in your order for the 1988-89 version of AppleWorks for Educators - A Beginning and Intermediate Workbook.

Mail to: ICCE. University of Oregon. 1787 Agate St., Eugene, OR 97403-9905, ph. 503/686-4414

LONG DISTANCE LEARNING

INDEPENDENT STUDY COURSES FROM ICCE
classes come to you! ICCE graduate level independent study courses for educators allow you to learn at your own pace while corresponding with your instructor by mail.

WORK INDIVIDUALLY OR WITH A GROUP OF COLLEAGUES

Take a complete course at home, or sign up with several other educators in your district and discover how studying together can be more effective for all of you.
Discuss issues, share ideas about projects, and practice problem solving techniques.

SAVE SSS

If your district supports group trainıng, you save money! Districts enrolling six or more educators in a course will receive a reduction in the fees of each person enrolled. To qualify your district must provide lab facilities and a resource person with experience in computing to help answer questions.

NOT JUST ANOTHER CLASS

ICCE Independent Study courses allow you the freedom to set your own schedule
and earn valuable credit. Designed to provide staff development and leadership, these courses meet the standards of the College of Education at the University of Oregon and carry graduate credit from the Oregon State System of Higher Education.

CHOOSE FROM THESE COURSES:

- Computers and Problem Solving by Dr. Dick Ricketts
- Long Range Planning for Computers in Schools
by Dr. Dick Ricketts
- Introduction to Logo Using LogoWrit by Dr. Sharon Burrowes Yoder
- Fundamentals of Computers in Education by Dr. Neal Strudler
- Introduction to AppleWorks ${ }^{(1)}$ for Educators by Linda Rathje and Dr. Dave Moursund

WRITE NOW FOR INFORMATION!
Long Distance Learning ICCE Independent Study University of Oregon 1787 Agate St. Eugene, OR 97403-9905 Ph. 503/686-4414

The International Council for Computers in Education

About ICCE

The International Council tor Computers in Education was tounded by Dr Dand Moursund in 1979 ds an unganiataon that would toster appropriate instructornal use of compurers throughout the world.
Today ICCE is the largest protessunal urganization tor computer educaturs at the precollege level It is nonprottr, supported by 14,000 individual members and more than 50 organizathons of computer-using educaturs worldu de These oryanizations are statew de or regonu ide in scope, averaging 500 members each Appronimately $84^{\circ} \%$ of ICCE' indwidual member-

About The Computing Teacher

ICCE publishes The Compuung Teacher joumal The Compua.ing Teacher provides accurate, respunstble, and innovarive infirmation for educators, administrators, computer coordinators, and teacher educators. The journal addresses both beginning and advanced computer educators through feature articles, columns, software reviews, and new product and conference listungs. Contributors to The Computing Teacher are leaders in therr fields, consistently providing the latest intormation in computer education and applications

Publications, Special Interest Groups

In addituon to The Cimputang Tewher. ICCE provides a number of publicatums to computer-using educators. ICCE's Special Interest Gruips provide indepth information for computer ciondination. teacher educators, computer sclence educators, and Logo-using educarors CA L.L Digest is published nine umes per year for ESI. teachers. ICCE commnttees address a variety of erhical and practical issues important to the computereducating communiry.

Independent Study Courses

ICCE uffers graduate-level independent study courses, designed to provide vatf de velopment and leadership. These courses have been approved by the College of Educaton at the University of Oregon and carry graduate credtr from the Oregon State System of Higher Education Participants correspond with instructors by mal.

Write for information and a free catalog today!

[^2]
[^0]: 50%-Prin:out of completed assignments
 20%-Written quizzes on pro. grams

[^1]: - Entering data into a data base;
 - Retrieving fi-tual information; or
 - Using data bases to organize lists.

[^2]: ICCE

 - University of Oregon
 - 1787 Agate St.

 Eugene, OR 97403
 Ph: 503/686-4414

